
COMP 322: Fundamentals of
Parallel Programming

Lecture 23: Actors (contd)

COMP 322 Lecture 23 8 March 2017

Instructors: Vivek Sarkar, Mack Joyner
Department of Computer Science, Rice University

{vsarkar, mjoyner}@rice.edu

http://comp322.rice.edu/

Worksheet #22 solution:
Interaction between finish and actors

2 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

What output will be printed if the end-finish operation from slide 13 is
moved from line 13 to line 11 as shown below?

1. finish(() -> {
2. int numThreads = 4;
3. int numberOfHops = 10;
4. ThreadRingActor[] ring = new ThreadRingActor[numThreads];
5. for(int i=numThreads-1;i>=0; i--) {
6. ring[i] = new ThreadRingActor(i);
7. ring[i].start(); // like an async
8. if (i < numThreads - 1) {
9. ring[i].nextActor(ring[i + 1]);
10. } }
11. }); // finish
12.ring[numThreads-1].nextActor(ring[0]);
13.ring[0].send(numberOfHops);

 

Deadlock (no output): the
end-finish operation in line
11 waits for all the actors
started in line 7 to
terminate, but the actors
are waiting for the
message sequence
initiated in line 13 before
they call exit().

! Rely on asynchronous
messaging

! Message are sent to an actor
using its send() method

! Messages queue up in the
mailbox

! Messages are processed by an
actor after it is started

! Messages are processed
asynchronously

! one at a time
! using the body of process()

Recap of Actors

3 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Simple Pipeline using Actors

4 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Stage-1

Filter
even
length
strings

Stage-2

Filter
lowercase
strings

Stage-3

Print
results

A
Simple
pipeline
with
3
stages

Simple
pipeline
with
stages

pipeline
with
stages

Sieve of Eratosthenes using Actors

5 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Pipeline and Actors

6 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

! Pipelined Parallelism
! Each stage can be represented as an actor
! Stages need to ensure ordering of messages while processing

them
! Slowest stage is a throughput bottleneck

! Deadlocks possible
! Deadlock occurs when all started (but non-terminated) actors have

empty mailboxes
! Data races possible when messages include shared objects
! Simulating synchronous replies requires some effort

! e.g., does not support synchronous get() or addAndGet()
! Implementing truly concurrent data structures is hard

! No support for parallel reads (as in read-write isolation), or for
parallel implementations of accumulators

! Difficult to achieve global consensus
! Finish and barriers not supported as first-class primitives

==> Some of these limitations can be overcome by using a hybrid model that
combines task parallelism with actors

Limitations of Actor Model

7 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Motivation for Parallelizing Actors

8 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

! Pipelined Parallelism
! Reduce effects of slowest stage by introducing task

parallelism.
! Increases the throughput.

Parallelism within an Actor’s process()
method

9 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

! Use finish construct within process() body and spawn child
tasks

! Take care not to introduce data races on local state!

1. class ParallelActor extends Actor<Message> {

2. void process(Message msg) {
3. finish(() -> {

4. async(() -> { S1; });

5. async(() -> { S2; });

6. async(() -> { S3; });

7. });

8. }

9. }

1. class ArraySumActor extends Actor<Object> {
2. private double resultSoFar = 0;
3. @Override
4. protected void process(final Object theMsg) {
5. if (theMsg != null) {
6. final double[] dataArray = (double[]) theMsg;
7. final double localRes = doComputation(dataArray);
8. resultSoFar += localRes;
9. } else { ... }
10. }
11. private double doComputation(final double[] dataArray) {
12. final double[] localSum = new double[2];
13. finish(() -> { // Two-way parallel sum snippet
14. final int length = dataArray.length;
15. final int limit1 = length / 2;
16. async(() -> {
17. localSum[0] = doComputation(dataArray, 0, limit1);
18. });
19. localSum[1] = doComputation(dataArray, limit1, length);
20. });
21. return localSum[0] + localSum[1];
22. }
23. }

Example of Parallelizing Actors

10 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

! Two techniques:
– Use finish construct to wrap asyncs in message

processing body
• Finish ensures all spawned asyncs complete

before next message returning from process()
– Allow escaping asyncs inside process() method

1. void process(Message msg) {

2. async(() -> { S1; });

3. async(() -> { S2; });

4. async(() -> { S3; });

5. }

Parallelizing Actors in HJlib

11 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

• WAIT! Won't escaping asyncs violate the one-
message-at-a-time rule in actors

• Solution: Use pause and resume

State Diagram for Extended Actors with
Pause-Resume

12 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

! Paused state: actor will not process subsequent messages until it is
resumed

! Resume actor when it is safe to process the next message
! Messages can accumulate in mailbox when actor is in PAUSED state

NOTE: Calls to exit(), pause(), resume() only impact the processing of the
next message, and not the processing of the current message. These calls
should just be viewed as “state change” operations.

Actors: pause and resume
! pause() operation:

! Is a non-blocking operation, i.e. allows the next statement to be
executed.

! Calling pause() when the actor is already paused is a no-op.
! Once paused, the state of the actor changes and it will no longer

process messages sent (i.e. call process(message)) to it until it is
resumed.

! resume() operation:
! Is a non-blocking operation.
! Calling resume() when the actor is not paused is an error, the HJ

runtime will throw a runtime exception.
! Moves the actor back to the STARTED state

! the actor runtime spawns a new asynchronous thread to start
processing messages from its mailbox.

1313 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Parallelizing Actors in HJlib

14 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

! Allow escaping asyncs inside process()

1. class ParallelActor2 extends Actor<Message> {

2. void process(Message msg) {
3. pause(); // process() will not be called until a resume() occurs

4. async(() -> { S1; }); // escaping async

5. async(() -> { S2; }); // escaping async

6. async(() -> {

7. // This async must be completed before next message

8. // Can also use async-await if you want S3 to wait for S1 & S2

9. S3;

10. resume();

11. });

12. }

13. }

Synchronous Reply using Pause/Resume

15 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

! Actors are asynchronous, sync. replies require blocking operations
! We need notifications from recipient actor on when to resume
! Resumption needs to be triggered on sender actor

! Use DDFs and asyncAwait
1. class SynchronousSenderActor
2. extends Actor<Message> {
3. void process(Msg msg) {
4. ...
5. DDF<T> ddf = newDDF();
6. otherActor.send(ddf);
7. pause(); // non-blocking
8. asyncAwait(ddf, () -> {
9. T synchronousReply = ddf.get();
10. println("Response received");
11. resume(); // non-blocking
12. });
13. ...
14. } }

1. class SynchronousReplyActor
2. extends Actor<DDF> {
3. void process(DDF msg) {
4. ...
5. println("Message received");
6. // process message
7. T responseResult = ...;
8. msg.put(responseResult);
9. ...
10. } }

Actors in the Real World

16 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

! Erlang - uses actors for high availability
! Facebook chat service backend
! Whatsapp messaging servers
! Ericsson, Motorola, T-Mobile - call processing/SMS
! RabbitMQ - high-performance enterprise messaging

! Akka - distributed Actor library in Scala
! TwoSigma - customized realtime Dashboards on huge

datasets
! ResearchGate - distributed event/data propagation system
! NBC - election reporting and analysis system
! eBay - scalable web server monitoring and management

Announcements

• Reminder: Checkpoint #2 for Homework 3 is due by 11:59pm
tonight, and the entire written + programming homework
(Checkpoint #3) is due by March 22nd

• Reminder: Quiz for Unit 5 is due by this Friday (March 10th)
• The registrar has announced the schedule for the COMP 322

final exam:
—2-MAY-2017
—9:00AM - 12:00PM
—Location TBD

• Scope of final exam (Exam 2) will be limited to Lectures 19 - 38

17 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

