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Worksheet #26a solution: use of tryLock()
Rewrite the transferFunds() method below to use j.u.c. locks with calls to 
tryLock (see slide 8) instead of synchronized.  Your goal is to write a correct 
implementation that never deadlocks, unlike the buggy version below (which 
can deadlock).  Assume that each Account object already contains a reference 
to a ReentrantLock object dedicated to that object e.g., from.lock() returns the 
lock for the from object.  Sketch your answer below using pseudocode. 

1. public void transferFunds(Account from, Account to, int amount) { 
2.    while (true) { 
3.      // assume that trylock() does not throw an exception 
4.      boolean fromFlag = from.lock.trylock(); 
5.      if (!fromFlag) continue;  
6.      boolean toFlag = to.lock.trylock(); 
7.      if (!toFlag) { from.lock.unlock(); continue; } 
8.      try { from.subtractFromBalance(amount);  
9.            to.addToBalance(amount); break; } 
10.      finally { from.lock.unlock(); to.lock.unlock(); } 
11.    } // while 
12.  }
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Worksheet #26b solution:  
Linearizability of method calls on a concurrent object

Is this a linearizable execution for a FIFO queue, q?
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No! q.enq(x) must precede q.enq(y) in all linear sequences of 
method calls invoked on q.  It is illegal for the q.deq() operation to 
return y.



Outline
• Safety and Liveness 

• Java Synchronizers 

• Dining Philosophers Problem
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Safety vs. Liveness
• In a concurrent setting, we need to specify both the safety and the 

liveness properties of an object 
• Need a way to define  

— Safety: when an implementation is functionally correct (does 
not produce a wrong answer) 

— Liveness: the conditions under which it guarantees progress 
(completes execution successfully) 

• Examples of safety 
• Data race freedom is a desirable safety property for parallel 

programs (Module 1) 
• Linearizability is a desirable safety property for concurrent 

objects (Module 2)
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Liveness
• Liveness = a program’s ability to make progress in a timely 

manner  

• Termination (“no infinite loop”) is not necessarily a requirement for 
liveness 

• some applications are designed to be non-terminating 

• Different levels of liveness guarantees (from weaker to stronger) 
for tasks/threads in a concurrent program 
1. Deadlock freedom 
2. Livelock freedom 
3. Starvation freedom 
4. Bounded wait
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1. Deadlock-Free Parallel Program 
Executions

• A parallel program execution is deadlock-free if no task’s execution remains 
incomplete due to it being blocked awaiting some condition 

• Example of a program with a deadlocking execution 
  

• In this case, Task1 and Task2 are in a deadlock cycle.   
– Three constructs that can lead to deadlock in HJlib: async await, finish w/ actors, 

explicit phaser wait (instead of next) 
— There are many constructs that can lead to deadlock cycles in other programming 

models (e.g., thread join, synchronized, locks in Java) 
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// Thread T1 

public void leftHand() { 

  synchronized(obj1) { 

    synchronized(obj2) { 

      // work with obj1 & obj2 

      . . . 

    } 

  } 

}  

// Thread T2 

public void leftHand() { 

  synchronized(obj2) { 

    synchronized(obj1) { 

      // work with obj2 & obj1 

      . . . 

    } 

  } 

}  



2. Livelock-Free Parallel Program 
Executions

• A parallel program execution exhibits livelock if two or more tasks repeat the 
same interactions without making any progress (special case of nontermination) 

• Livelock example:  

// Task T1 
incrToTwo(AtomicInteger ai) { 
  // increment ai till it reaches 2   
  while (ai.incrementAndGet() < 2); 
} 

• Many well-intended approaches to avoid deadlock result in livelock instead 

• Any HJlib program that uses only Module 1 features, and is data-race-free, is 
guaranteed to be livelock-free (may be nonterminating in a single task, however)

// Task T2 
decrToNegTwo(AtomicInteger ai) { 
  // decrement ai till it reaches -2  
  while (a.decrementAndGet() > -2); 
}
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3. Starvation-Free Parallel Program 
Executions

• A parallel program execution exhibits starvation if some task is repeatedly 
denied the opportunity to make progress 
— Starvation-freedom is sometimes referred to as “lock-out freedom” 
— Starvation is possible in HJ programs, since all tasks in the same program 

are assumed to be cooperating, rather than competing 
– If starvation occurs in a deadlock-free HJ program, the “equivalent” 

sequential program must be non-terminating (infinite loop) 
• Classic source of starvation for OS threads: “Priority Inversion” 

— Thread A is at high priority, waiting for result or resource from Thread C at 
low priority 

— Thread B at intermediate priority is CPU-bound 
— Thread C never runs (because its priority is lower than B’s priority), hence 

thread A never runs 
— Fix: when a high priority thread waits for a low priority thread, boost the 

priority of the low-priority thread
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Related Concept: Progress Conditions 
for shared resources

• A resource is said to be obstruction-free if it is deadlock-free 
• A resource is said to be lock-free if it is livelock-free and deadlock-

free 
• A resource is said to be wait-free if it is starvation-free, livelock-

free, and deadlock-free 

• Wait-free ⇒  every thread/task will eventually get an 
opportunity to make progress, i.e., to access the shared 
resource 

• Question: how to bound the wait duration?
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4. Bounded Wait
• A parallel program execution exhibits bounded wait if each task 

requesting a resource should only have to wait for a bounded 
number of other tasks to “cut in line” i.e., to gain access to the 
resource after its request has been registered. 

• If bound = 0, then the program execution is fair
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Key Functional Groups in 
java.util.concurrent (j.u.c.)

• Atomic variables 
— The key to writing lock-free algorithms 

• Concurrent Collections:  
— Queues, blocking queues, concurrent hash map, … 
— Data structures designed for concurrent environments 

• Locks and Conditions 
— More flexible synchronization control 
— Read/write locks 

• Executors, Thread pools and Futures 
— Execution frameworks for asynchronous tasking 

• Synchronizers: Semaphore, Latch, Barrier, Exchanger 
— Ready made tools for thread coordination
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j.u.c Synchronizers --- common patterns  
in HJ’s phaser construct

• Class library includes several state-dependent synchronizer classes 
— CountDownLatch – waits until latch reaches terminal state 
— Semaphore – waits until permit is available 
— CyclicBarrier – like barriers in HJlib forall loops 
— Phaser – inspired by Habanero phasers 
— FutureTask – like futures in HJlib 
— Exchanger – waits until two threads rendezvous (special synchronization) 

• These typically have three main groups of methods 
— Methods that block until the object has reached the right state  

Timed versions will fail if the timeout expired 
Many versions can be cancelled via interruption 

— Polling methods that allow non-blocking interactions 
— State change methods that may release a blocked method 

— WARNING: synchronizers should only be used in Java threads, not HJlib tasks, since 
they can cause the HJlib runtime system to deadlock
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CountDownLatch

• A counter that releases waiting threads when it reaches zero 
—Allows one or more threads to wait for one or more events 
—Initial value of 1 gives a simple gate or latch 

CountDownLatch(int initialValue) 

• await(): wait until the counter is zero 
—await() is what differentiates a CountDownLatch from an 

AtomicInteger 

• countDown(): decrement the counter if > 0 

• Query: getCount() 

• Very simple but widely useful 
• Replaces error-prone attempts with data races
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Example: using j.u.c.CountDownLatch to 
implement finish for Java threads

• Problem: Run N tasks concurrently in N threads and wait until all are complete 
— Use a CountDownLatch initialized to the number of threads 

1.    public static void runTask(int numThreads, final Runnable task)  
2.            throws InterruptedException { 
3.      final CountDownLatch done = new CountDownLatch(numThreads); 
4.      for (int i=0; i<numThreads; i++) { 
5.          Thread t = new Thread() { 
6.              public void run() { 
7.                 try {  

8.                  task.run();                 

9.                 }  

10.                finally { done.countDown();} 

11.            }}; 

12.        t.start(); 
13.      } 
14.      done.await();   // wait for all threads to finish 
15.    }
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Old-fashioned 
way of specifying 
lambdas in Java!



Semaphores
• Conceptually serve as “permit” holders 

— Construct with an initial number of permits 
— acquire(): waits for permit to be available, then “takes” 

one, i.e., decrements the count of available permits 
— release(): “returns” a permit, i.e., increments the count of 

available permits 
— But no actual permits change hands 

— The semaphore just maintains the current count 
— Thread performing release() can be different from the thread 

performing acquire() 
• “fair” variant hands out permits in FIFO order 
• Useful for managing bounded access to a shared resource
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Bounded Blocking Concurrent List 
using Semaphores

1.  public class BoundedBlockingList { 
2.   final int capacity; 
3.   final ConcurrentLinkedList list = new ConcurrentLinkedList();   
4.   final Semaphore sem; 
5.   public BoundedBlockingList(int capacity) { 
6.    this.capacity = capacity; 
7.    sem = new Semaphore(capacity); 
8.  } 
9.  public void addFirst(Object x) throws InterruptedException { 
10.    sem.acquire(); // blocks until a permit is available 
11.    try { list.addFirst(x); }  
12.    catch (Throwable t){ sem.release(); rethrow(t); } // only performed on exception 
13.  } 
14.  public boolean remove(Object x) { 
15.    if (list.remove(x)) {  sem.release(); return true; } 
16.    return false; 
17.  }  
18.  … } // BoundedBlockingList  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The Dining Philosophers Problem
Constraints 
• Five philosophers either eat or think 
• They must have two forks to eat 

(chopsticks are a better motivation!) 
• Can only use forks on either side of 

their plate 
• No talking permitted 
Goals 
• Progress guarantees 

• Deadlock freedom 
• Livelock freedom 
• Starvation freedom 
• Maximum concurrency (no one 

should starve if there are 
available forks for them)
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General Structure of Dining 
Philosophers Problem: PseudoCode

1. int numPhilosophers = 5; 

2. int numForks = numPhilosophers; 

3. Fork[] fork = ... ; // Initialize array of forks 

4. forall(point [p] : [0:numPhilosophers-1]) { 

5.   while(true) { 

6.     Think ; 

7.     Acquire forks; 

8.       // Left fork = fork[p] 

9.       // Right fork = fork[(p-1)%numForks] 

10.     Eat ; 

11.   } // while 

12.} // forall
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Solution 1: using Java’s synchronized 
statement

1. int numPhilosophers = 5; 

2. int numForks = numPhilosophers; 

3. Fork[] fork = ... ; // Initialize array of forks 

4. forall(point [p] : [0:numPhilosophers-1]) { 

5.   while(true) { 

6.     Think ; 

7.     synchronized(fork[p]) 

8.       synchronized(fork[(p-1)%numForks]) { 

9.         Eat ; 

10.      } 

11.    } 

12.  } // while 

13.} // forall
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Solution 2: using Java’s Lock library
1. int numPhilosophers = 5; 

2. int numForks = numPhilosophers; 

3. Fork[] fork = ... ; // Initialize array of forks 

4. forall(point [p] : [0:numPhilosophers-1]) { 

5.   while(true) { 

6.     Think ; 

7.     if (!fork[p].lock.tryLock()) continue; 

8.     if (!fork[(p-1)%numForks].lock.tryLock()) { 

9.       fork[p].lock.unLock(); continue; 

10.    } 

11.    Eat ;  

12.    fork[p].lock.unlock();fork[(p-1)%numForks].lock.unlock(); 

13.  } // while 

14.} // forall
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Solution 3: using HJ’s isolated statement
1. int numPhilosophers = 5; 

2. int numForks = numPhilosophers; 

3. Fork[] fork = ... ; // Initialize array of forks 

4. forall(point [p] : [0:numPhilosophers-1]) { 

5.   while(true) { 

6.     Think ; 

7.     isolated { 

8.       Pick up left and right forks; 

9.       Eat ; 

10.     } 

11.  } // while 

12.} // forall

24 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)



Solution 4: using HJ’s object-based isolation
1. int numPhilosophers = 5; 

2. int numForks = numPhilosophers; 

3. Fork[] fork = ... ; // Initialize array of forks 

4. forall(point [p] : [0:numPhilosophers-1]) { 

5.   while(true) { 

6.     Think ; 

7.     isolated(fork[p], fork[(p-1)%numForks]) { 

8.       Eat ; 

9.     } 

10.  } // while 

11.} // forall
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Solution 5: using Java’s Semaphores
1. int numPhilosophers = 5; 

2. int numForks = numPhilosophers; 

3. Fork[] fork = ... ; // Initialize array of forks 

4. Semaphore table = new Semaphore(4, true); 

5. for (i=0;i<numForks;i++) fork[i].sem = new Semaphore(1, true); 

6. forall(point [p] : [0:numPhilosophers-1]) { 

7.   while(true) { 

8.     Think ; 

9.     table.acquire(); // At most 4 philosophers at table 

10.    fork[p].sem.acquire(); // Acquire left fork 

11.    fork[(p-1)%numForks].sem.acquire(); // Acquire right fork 

12.    Eat ; 

13.    fork[p].sem.release(); fork[(p-1)%numForks].sem.release(); 

14.    table.release(); 

15.  } // while 

16.} // forall
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“true” parameter 
creates a semaphore 

that guarantees 
fairness


