
COMP 322: Fundamentals of
Parallel Programming

Lecture 27: Safety and Liveness
Properties, Java Synchronizers, Dining

Philosophers Problem

COMP 322 Lecture 27 24 March 2017

Instructors: Vivek Sarkar, Mack Joyner
Department of Computer Science, Rice University

{vsarkar, mjoyner}@rice.edu

http://comp322.rice.edu/

Worksheet #26a solution: use of tryLock()
Rewrite the transferFunds() method below to use j.u.c. locks with calls to
tryLock (see slide 8) instead of synchronized. Your goal is to write a correct
implementation that never deadlocks, unlike the buggy version below (which
can deadlock). Assume that each Account object already contains a reference
to a ReentrantLock object dedicated to that object e.g., from.lock() returns the
lock for the from object. Sketch your answer below using pseudocode.

1. public void transferFunds(Account from, Account to, int amount) {
2. while (true) {
3. // assume that trylock() does not throw an exception
4. boolean fromFlag = from.lock.trylock();
5. if (!fromFlag) continue;
6. boolean toFlag = to.lock.trylock();
7. if (!toFlag) { from.lock.unlock(); continue; }
8. try { from.subtractFromBalance(amount);
9. to.addToBalance(amount); break; }
10. finally { from.lock.unlock(); to.lock.unlock(); }
11. } // while
12. }

2 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Worksheet #26b solution:
Linearizability of method calls on a concurrent object

Is this a linearizable execution for a FIFO queue, q?

3 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

No! q.enq(x) must precede q.enq(y) in all linear sequences of
method calls invoked on q. It is illegal for the q.deq() operation to
return y.

Outline
• Safety and Liveness

• Java Synchronizers

• Dining Philosophers Problem

4 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Safety vs. Liveness
• In a concurrent setting, we need to specify both the safety and the

liveness properties of an object
• Need a way to define

— Safety: when an implementation is functionally correct (does
not produce a wrong answer)

— Liveness: the conditions under which it guarantees progress
(completes execution successfully)

• Examples of safety
• Data race freedom is a desirable safety property for parallel

programs (Module 1)
• Linearizability is a desirable safety property for concurrent

objects (Module 2)

5 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Liveness
• Liveness = a program’s ability to make progress in a timely

manner

• Termination (“no infinite loop”) is not necessarily a requirement for
liveness

• some applications are designed to be non-terminating

• Different levels of liveness guarantees (from weaker to stronger)
for tasks/threads in a concurrent program
1. Deadlock freedom
2. Livelock freedom
3. Starvation freedom
4. Bounded wait

6 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

1. Deadlock-Free Parallel Program
Executions

• A parallel program execution is deadlock-free if no task’s execution remains
incomplete due to it being blocked awaiting some condition

• Example of a program with a deadlocking execution

• In this case, Task1 and Task2 are in a deadlock cycle.
– Three constructs that can lead to deadlock in HJlib: async await, finish w/ actors,

explicit phaser wait (instead of next)
— There are many constructs that can lead to deadlock cycles in other programming

models (e.g., thread join, synchronized, locks in Java)

7 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

// Thread T1

public void leftHand() {

 synchronized(obj1) {

 synchronized(obj2) {

 // work with obj1 & obj2

 . . .

 }

 }

}

// Thread T2

public void leftHand() {

 synchronized(obj2) {

 synchronized(obj1) {

 // work with obj2 & obj1

 . . .

 }

 }

}

2. Livelock-Free Parallel Program
Executions

• A parallel program execution exhibits livelock if two or more tasks repeat the
same interactions without making any progress (special case of nontermination)

• Livelock example:

// Task T1
incrToTwo(AtomicInteger ai) {
 // increment ai till it reaches 2
 while (ai.incrementAndGet() < 2);
}

• Many well-intended approaches to avoid deadlock result in livelock instead

• Any HJlib program that uses only Module 1 features, and is data-race-free, is
guaranteed to be livelock-free (may be nonterminating in a single task, however)

// Task T2
decrToNegTwo(AtomicInteger ai) {
 // decrement ai till it reaches -2
 while (a.decrementAndGet() > -2);
}

8 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

3. Starvation-Free Parallel Program
Executions

• A parallel program execution exhibits starvation if some task is repeatedly
denied the opportunity to make progress
— Starvation-freedom is sometimes referred to as “lock-out freedom”
— Starvation is possible in HJ programs, since all tasks in the same program

are assumed to be cooperating, rather than competing
– If starvation occurs in a deadlock-free HJ program, the “equivalent”

sequential program must be non-terminating (infinite loop)
• Classic source of starvation for OS threads: “Priority Inversion”

— Thread A is at high priority, waiting for result or resource from Thread C at
low priority

— Thread B at intermediate priority is CPU-bound
— Thread C never runs (because its priority is lower than B’s priority), hence

thread A never runs
— Fix: when a high priority thread waits for a low priority thread, boost the

priority of the low-priority thread

9 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Related Concept: Progress Conditions
for shared resources

• A resource is said to be obstruction-free if it is deadlock-free
• A resource is said to be lock-free if it is livelock-free and deadlock-

free
• A resource is said to be wait-free if it is starvation-free, livelock-

free, and deadlock-free

• Wait-free ⇒ every thread/task will eventually get an
opportunity to make progress, i.e., to access the shared
resource

• Question: how to bound the wait duration?

10 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

4. Bounded Wait
• A parallel program execution exhibits bounded wait if each task

requesting a resource should only have to wait for a bounded
number of other tasks to “cut in line” i.e., to gain access to the
resource after its request has been registered.

• If bound = 0, then the program execution is fair

11 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Outline
• Safety and Liveness

• Java Synchronizers

• Dining Philosophers Problem

12 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Key Functional Groups in
java.util.concurrent (j.u.c.)

• Atomic variables
— The key to writing lock-free algorithms

• Concurrent Collections:
— Queues, blocking queues, concurrent hash map, …
— Data structures designed for concurrent environments

• Locks and Conditions
— More flexible synchronization control
— Read/write locks

• Executors, Thread pools and Futures
— Execution frameworks for asynchronous tasking

• Synchronizers: Semaphore, Latch, Barrier, Exchanger
— Ready made tools for thread coordination

13 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

j.u.c Synchronizers --- common patterns  
in HJ’s phaser construct

• Class library includes several state-dependent synchronizer classes
— CountDownLatch – waits until latch reaches terminal state
— Semaphore – waits until permit is available
— CyclicBarrier – like barriers in HJlib forall loops
— Phaser – inspired by Habanero phasers
— FutureTask – like futures in HJlib
— Exchanger – waits until two threads rendezvous (special synchronization)

• These typically have three main groups of methods
— Methods that block until the object has reached the right state

Timed versions will fail if the timeout expired
Many versions can be cancelled via interruption

— Polling methods that allow non-blocking interactions
— State change methods that may release a blocked method

— WARNING: synchronizers should only be used in Java threads, not HJlib tasks, since
they can cause the HJlib runtime system to deadlock

14 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

CountDownLatch

• A counter that releases waiting threads when it reaches zero
—Allows one or more threads to wait for one or more events
—Initial value of 1 gives a simple gate or latch

CountDownLatch(int initialValue)

• await(): wait until the counter is zero
—await() is what differentiates a CountDownLatch from an

AtomicInteger

• countDown(): decrement the counter if > 0

• Query: getCount()

• Very simple but widely useful
• Replaces error-prone attempts with data races

15 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Example: using j.u.c.CountDownLatch to
implement finish for Java threads

• Problem: Run N tasks concurrently in N threads and wait until all are complete
— Use a CountDownLatch initialized to the number of threads

1. public static void runTask(int numThreads, final Runnable task)
2. throws InterruptedException {
3. final CountDownLatch done = new CountDownLatch(numThreads);
4. for (int i=0; i<numThreads; i++) {
5. Thread t = new Thread() {
6. public void run() {
7. try {

8. task.run();

9. }

10. finally { done.countDown();}

11. }};

12. t.start();
13. }
14. done.await(); // wait for all threads to finish
15. }

16 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Old-fashioned
way of specifying
lambdas in Java!

Semaphores
• Conceptually serve as “permit” holders

— Construct with an initial number of permits
— acquire(): waits for permit to be available, then “takes”

one, i.e., decrements the count of available permits
— release(): “returns” a permit, i.e., increments the count of

available permits
— But no actual permits change hands

— The semaphore just maintains the current count
— Thread performing release() can be different from the thread

performing acquire()
• “fair” variant hands out permits in FIFO order
• Useful for managing bounded access to a shared resource

17 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Bounded Blocking Concurrent List
using Semaphores

1. public class BoundedBlockingList {
2. final int capacity;
3. final ConcurrentLinkedList list = new ConcurrentLinkedList();
4. final Semaphore sem;
5. public BoundedBlockingList(int capacity) {
6. this.capacity = capacity;
7. sem = new Semaphore(capacity);
8. }
9. public void addFirst(Object x) throws InterruptedException {
10. sem.acquire(); // blocks until a permit is available
11. try { list.addFirst(x); }
12. catch (Throwable t){ sem.release(); rethrow(t); } // only performed on exception
13. }
14. public boolean remove(Object x) {
15. if (list.remove(x)) { sem.release(); return true; }
16. return false;
17. }
18. … } // BoundedBlockingList  

18 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Outline
• Safety and Liveness

• Java Synchronizers

• Dining Philosophers Problem
— Acknowledgments

– CMSC 330 course notes, U. Maryland
 http://www.cs.umd.edu/~lam/cmsc330/summer2008/

lectures/class20-threads_classicprobs.ppt
– Dave Johnson (COMP 421 instructor)

19 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

The Dining Philosophers Problem
Constraints
• Five philosophers either eat or think
• They must have two forks to eat

(chopsticks are a better motivation!)
• Can only use forks on either side of

their plate
• No talking permitted
Goals
• Progress guarantees

• Deadlock freedom
• Livelock freedom
• Starvation freedom
• Maximum concurrency (no one

should starve if there are
available forks for them)

20 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

0

1

2

0

3

11

4

0

1
2

3

4

General Structure of Dining
Philosophers Problem: PseudoCode

1. int numPhilosophers = 5;

2. int numForks = numPhilosophers;

3. Fork[] fork = ... ; // Initialize array of forks

4. forall(point [p] : [0:numPhilosophers-1]) {

5. while(true) {

6. Think ;

7. Acquire forks;

8. // Left fork = fork[p]

9. // Right fork = fork[(p-1)%numForks]

10. Eat ;

11. } // while

12.} // forall

21 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Solution 1: using Java’s synchronized
statement

1. int numPhilosophers = 5;

2. int numForks = numPhilosophers;

3. Fork[] fork = ... ; // Initialize array of forks

4. forall(point [p] : [0:numPhilosophers-1]) {

5. while(true) {

6. Think ;

7. synchronized(fork[p])

8. synchronized(fork[(p-1)%numForks]) {

9. Eat ;

10. }

11. }

12. } // while

13.} // forall

22 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Solution 2: using Java’s Lock library
1. int numPhilosophers = 5;

2. int numForks = numPhilosophers;

3. Fork[] fork = ... ; // Initialize array of forks

4. forall(point [p] : [0:numPhilosophers-1]) {

5. while(true) {

6. Think ;

7. if (!fork[p].lock.tryLock()) continue;

8. if (!fork[(p-1)%numForks].lock.tryLock()) {

9. fork[p].lock.unLock(); continue;

10. }

11. Eat ;

12. fork[p].lock.unlock();fork[(p-1)%numForks].lock.unlock();

13. } // while

14.} // forall

23 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Solution 3: using HJ’s isolated statement
1. int numPhilosophers = 5;

2. int numForks = numPhilosophers;

3. Fork[] fork = ... ; // Initialize array of forks

4. forall(point [p] : [0:numPhilosophers-1]) {

5. while(true) {

6. Think ;

7. isolated {

8. Pick up left and right forks;

9. Eat ;

10. }

11. } // while

12.} // forall

24 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Solution 4: using HJ’s object-based isolation
1. int numPhilosophers = 5;

2. int numForks = numPhilosophers;

3. Fork[] fork = ... ; // Initialize array of forks

4. forall(point [p] : [0:numPhilosophers-1]) {

5. while(true) {

6. Think ;

7. isolated(fork[p], fork[(p-1)%numForks]) {

8. Eat ;

9. }

10. } // while

11.} // forall

25 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Solution 5: using Java’s Semaphores
1. int numPhilosophers = 5;

2. int numForks = numPhilosophers;

3. Fork[] fork = ... ; // Initialize array of forks

4. Semaphore table = new Semaphore(4, true);

5. for (i=0;i<numForks;i++) fork[i].sem = new Semaphore(1, true);

6. forall(point [p] : [0:numPhilosophers-1]) {

7. while(true) {

8. Think ;

9. table.acquire(); // At most 4 philosophers at table

10. fork[p].sem.acquire(); // Acquire left fork

11. fork[(p-1)%numForks].sem.acquire(); // Acquire right fork

12. Eat ;

13. fork[p].sem.release(); fork[(p-1)%numForks].sem.release();

14. table.release();

15. } // while

16.} // forall

26 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

“true” parameter
creates a semaphore

that guarantees
fairness

