COMP 322: Fundamentals of
Parallel Programming

Lecture 32: Partitioned Global Address Space
(PGAS) programming models

Instructors: Vivek Sarkar, Mack Joyner
Department of Computer Science, Rice University
{vsarkar, mjoyner}@rice.edu

http://comp322.rice.edu/

COMP 322 Lecture 32 05 April 2017

Worksheet #31 solution: PageRank Example

Name: Net ID:

In the space below, indicate what you expect the relative ranking to be
for the three pages below (with the given links). Show your computation
(approximations are fine).
Final, after 7 iterations:
(1) Amazon = 1.22

(2) Yahoo = 1.15

(3) Microsoft = 0.65

2 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) @

Partitioned Global Address Space
Languages

Global address space * simpler than two-sided
—one-sided communication (GET/PUT) message passing in MPI
Programmer has control over performance-critical factors
—data distribution and locality control - Iacking in thread-based models
—computation partitioning - HJ places (Lecture 34) help
—communication placement with Iopal!ty gontrol but not with

data distribution

Data movement and synchronization as language primitives

—amenable to compiler-based communication optimization

“Global view” rather than “local view”

Global View Local View (4 processes

COMP 322, Spring 2017 (V. Sarkar, M. Joyner) %\d

Partitioned Global Address Space (PGAS)

Languages
e Unified Parallel C (C) http://upc.wikinet.org
e Titanium (early Java) nttp://titanium.cs.berkeley.edu
 (Coarray Fortran 2.0 (Fortran) http://cafrice.edu
e UPC++ (C++) https://bitbucket.org/upexx
 Habanero-UPC++ (C++) http://habanero-rice.github.io/habanero-upc/

o Related efforts: newer languages developed since 2003 as part of
the DARPA High Productivity Computing Systems (HPCS) program

—IBM: X10 (starting point for Habanero-Java)
—Cray: Chapel
—Oracle/Sun: Fortress

4 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) '%%3

PGAS model

o Acollection of “threads” (like MPI processes) operating in a partitioned global
address space that is logically distributed across threads.

o Each thread has affinity with a portion of the globally shared address space. Each
thread has also a private space.

o Elements in the partitioned global space co-located with a thread are said to have
affinity to that thread.

Q
§ Thread 0 Thread 1 Thread
3 o THREADS-1
- wn
2=9
2385 Shared
52 O
a O ©
QW .
R Private Private seoe Private
= © 0 1 THREADS-1
. O
o U

5 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) %

Unified Parallel C (UPC)
Execution Model

e Multiple threads working independently in a SPMD fashion
—MYTHREAD specifies thread index (0.. THREADS-1)

— Like MPI processes and ranks
—# threads specified at compile-time or program launch time

o Partitioned Global Address Space (different from MPI)
* A pointer-to-shared can reference all locations in the shared space

* A pointer-to-local (“plain old C pointer”) may only reference addresses in
its private space or addresses in its portion of the shared space

 Static and dynamic memory allocations are supported for both shared and
private memory

e Threads synchronize as necessary using
—synchronization primitives
—shared variables

6 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) &,

Shared and Private Data

o Static and dynamic memory allocation of each type of data

o Shared objects placed in memory based on affinity
—shared scalars have affinity to thread 0

— here, a scalar means a non-array instance of any type
(could be a struct, for example)

—by default, elements of shared arrays are allocated “round
robin” among memory modules co-located with each thread
(cyclic distribution)

- each shared array’s distribution starts with the first element
assigned to thread 0

7 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) b@ﬁ

A One-dimensional Shared Array

Consider the following data layout directive

shared int y[2 * THREADS + 1];

For THREADS = 3, we get the following “cyclic” layout

Thread O Thread 1 Thread 2
y[O] y[1] y[2]
y[3] y[4] y[3]
y[6]

8 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) &,

A Multi-dimensional Shared Array

shared int A[4] [THREADS] ;

For THREADS = 3, we get the following cyclic layout

Thread O Thread 1 Thread 2
Al0][0] AlO][1] AlO][2
A[1][0 Al1][1 Al1][2
A[2][0] Al2][1] Al2][2
A[3][0] A[3][1] A[3][2

9 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) &,

Shared and Private Data

Consider the following data layout directives

shared int x; // x has affinity to thread O
shared int y[THREADS];

int z; // private

For THREADS = 3, we get the following layout

Thread 0 Thread 1 Thread 2
X >< ><
y[0] y[1] y[2]
Z Z yi

10 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) %}

Controlling the Layout of Shared Arrays

o Can specify a blocking factor for shared arrays to obtain “block-
cyclic” distributions

—default block size is 1 element = cyclic distribution

o Shared arrays are distributed on a block per thread basis, round
robin allocation of block size chunks

o Example layout using block size specifications

block size
—e.g., shared int a[l6]
Thread 0 Thread 1 read 2
a[0] a[2] al4]
a[1] a[3] a[5]

| a[6] | | a[8] | a[10]

a[11]

Blocking Multi-dimensional Data

e (Consider the data declaration
—shared [3] int A[4] [THREADS];

e When THREADS = 4, this results in the following data layout

Thread 0 Thread 1 Thread 2 Thread 3
A[O0][3] Al1][2] A
Al1][0] AT11[3 A21127
A3

AlL][1] A[2][0]
A[3][3]

12 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) &,

A Simple UPC Program: Vector Addition

//vect add.c
#include <upc relaxed.h>

Thread 0 Thread 1

aoedg paleys

' *
#define N 100*THREADS lteration #: 0 1
shared int v1[N], v2[N], vlplusv2[N]; 2 3

v1[0] vi[1]
void main () { vi[2] vi[3]
int 1i; ceoe
for (i=0,; i<N; i++) v2[0] v2[1]
if (== 1 % THREADS) v2[2] v2[3]
viplusv2[i]=v1[i]+v2[i]; oo
} viplusv2[0] | viplusv2[1]
viplusv2[2] | viplusv2[3]

Each thread executes each
iteration to check if it has work

13 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) &,

A More Efficient Vector Addition

//vect_add.c

#include <upc relaxed.h> Thread 0 Thread 1

aoedg paleys

#define N 100*THREADS Iteration #: O 1
shared int v1[N], v2[N], vlplusv2[N]; v12[0] vﬁ]
vi[2] vi[3]
void main() { . oo
int 1; v2[0] v2[1]
for(i = ; 1 < N; v2[2] v2[3]
i += THREADS) oo
lelusvz [l] =v1l [:I.] +v2 [l] : viplusv2[0] | viplusv2[1]
} viplusv2[2] | viplusv2[3]

Each thread executes only its own iterations

14 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Worksharing with upc forall

o Distributes independent iterations across threads

o Simple C-like syntax and semantics
—upc forall(init; test; loop; affinity)

o Affinity is used to enable locality control
—usually, the goal is to map iteration to thread where (all/most of)
the iteration’s data resides
o Affinity can be
—an integer expression (with implicit mod on NUMTHREADS), or a

—reference to (address of) a shared object

15 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) %}

Work Sharing + Affinity with upc forall

o Example 1: explicit data affinity using shared references
shared int a[100],b[100], c[100];
int i;
upc forall (i=0; i<100; i++; &a[i])
// Execute iteration i at a[i]’s thread
a[i] = b[i] * c[i];

o Example 2: implicit data affinity with integer expressions
shared int a[100],b[100], c[100];
int 1i;
upc_forall (i=0; 1i<100; i++; 1)
// Execute iteration i at thread i%THREADS
a[i] = b[1] * c[1];

Both yield a round-robin distribution of iterations

16 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) p/@*»q

Work Sharing + Affinity with upc forall

e Example 3: implicit affinity by chunks
shared [25] int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; (*"THREADS)/100)
a[i] = b[i] * cfi];

e Assuming 4 threads, the distribution of upc_forall iterations is as follows:

iteration 1 1*THREADS |[1*THREADS/100
0.24 0..96 0
25..49 100..196 1
50..74 200..296 2
75..99 300..396 3

17 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Synchronization in UPC

o Barriers (blocking)
—upc_barrier
— like “next” operation in HJ

o Split-phase barriers (non-blocking)
—upc_notify
— like explicit (non-blocking) signal on an HJ phaser
—upc_wait
— upc_wait is like explicit wait on an HJ phaser

e Lock primitives
—void upc_lock(upc_lock_t *I)
—int upc_lock_attempt(upc_lock_t *I) // like trylock()
—void upc_unlock(upc_lock_t *l)

18 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) %}

UPC++ library: a “Compiler-Free” Approach
for PGAS (source: LBNL)

¢ Leverage C++ standards and

UPC++

Template idioms are .
Header translated com pllers
Files to C++

— Implement UPC++ as a C++ template

UPC++ @ > - library
Program | Compiler

— C++ templates can be used as a

e e e e e e ﬂ mini-language to extend C++ syntax
i UPC++ .
Runimeiidl” Shject e Many new features in C++11
— ‘)| Linker (| D — E.g., type inference, variadic
: calls templates, lambda functions, r-value
System
: L ibe : U references
EELICIC LR R] (Exe) — C++ 11 is well-supported by major
compilers

19 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) @

Habanero-UPC++: Extending UPC++ with
Task Parallelism (LBNL, Rice)

1. finish ([capture listl] () {

2. // Any Habanero dynamic tasking constructs

3. . « . // finish, async, asyncAwait

4. « o

5. // Remote function invocation

6. asyncAt (destPlace, [capture list2] () {

7. Statements;

8. })i

9. « o .

10. // Remote copy with completion signal in result

11. asyncCopy (src, dest, count, ddf=NULL);

12. « o e

13. asyncAwait (ddf, ...); // local

14.}); // waits for all local/remote async’s to
complete

“HabaneroUPC++: A Compiler-free PGAS Library.” V. Kumar, Y. Zheng, V. Cavé, Z. Budimli¢, V. Sarkar, PGAS 2015.

20 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) 7>

Example code structure from an application
run on ORNL supercomputer (LSMS)

MPI version: Habanero-UPC++ version:

// Post MPI_IRecv() calls // Issue one-sided
// asyncCopy() calls

// Post MPI_ISend() calls Co .
// Issue data-driven tasks

// Perform all MPI_wait() // 1n any order without any
// calls // wait/barrier operations
Ce . hcpp: :asyncAwait(
// Perform tasks resultl, result?2,
// Each task needs results [=](O) { task body });
// from two MPI_IRecv() calls

. async(..)
MPI version waits for all IRecv() Habanero-UPC++ version specifies that
calls to complete before executing each asyncAwait() task can complete
all tasks (like a barrier) when its two results become available

from asyncCopy() calls

21 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

