COMP 322: Fundamentals of
Parallel Programming

Lecture 38: General-Purpose GPU (GPGPU)
Computing

Guest Lecturer: Max Grossman Instructors: Vivek Sarkar, Mack Joyner
Department of Computer Science, Rice University
{jmg3, vsarkar, mjoyner}@rice.edu

http://comp322.rice.edu/

COMP 322 Lecture 38 19 April 2017

http://comp322.rice.edu/

Worksheet #37:
Creating a Circuit for Parallel Prefix Sums

Name: Netid:

Assume that you have a full adder cell, @, that can be used as a building block

for circuits (no need to worry about carry's). Create a circuit that generates the
prefix sums for 1, .. 6, by adding at most 5 more cells to the sketch shown below,
while ensuring that the CPL is at most 3 cells long. Assume that you can duplicate
any value (fan-out) to whatever degree you like without any penalty.

1 2 3 4 5

, |
T ﬁ:‘f T
|

T

1 3 6 10 15 21 Qutputs
2 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) @

(Inputs)

<
<
<

Peak Double Precision FLOPS Peak Memory Bandwidth
GFLOPS

M2090

500

2009 2010 201 012
~i—~NVIDIA GPU -0--x86 CPU

e Performance gap between GPUs and multicore CPUs continues to
widen

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

So | Can Move Dots Around,
So What?

Google - Use GPUs internally to train deep learning models (e.g. for
NLP)

USA Departments of Energy & Defense - 3rd fastest supercomputer
in the world based on GPUs, two of the next three supercomputers
deployed by USA Department of Energy will be GPU based

Mayo Clinic - Using GPUs to improve tumor identification
Audi - Using GPUs for self-driving cars

SpaceX - Uses GPUs internally for combustion modeling of Merlin
methane-based rocket

Facebook - Uses GPUs through their open source Caffe2 framework

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Flynn’s Taxonomy for Parallel
Computers

Sinle Instruction Multiple Instructions

Single Data SISD MISD

Multiple Data SIMD MIMD

Single Instruction, Single Data stream (SISD)

A sequential computer which exploits no parallelism in either the instruction or data
streams. e.g., old single processor PC

Single Instruction, Multiple Data streams (SIMD)
A computer which exploits multiple data streams against a single instruction stream to
perform operations which may be naturally parallelized. e.g. graphics processing unit

Multiple Instruction, Single Data stream (MISD)
Multiple instructions operate on a single data stream. Uncommon architecture which is
generally used for fault tolerance. Heterogeneous systems operate on the same data
stream and must agree on the result. e.g. the Space Shuttle flight control computer.

Multiple Instruction, Multiple Data streams (MIMD)
Multiple autonomous processors simultaneously executing different instructions on
different data. e.g. a PC cluster memory space.

5 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) @

http://en.wikipedia.org/wiki/SISD
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/MISD
http://en.wikipedia.org/wiki/MIMD

Multicore Processors are examples of
MIMD systems

e Memory hierarchy for a single Intel Xeon Quad-core E5530

L2 unified cache L2 unified cache

processor chip
Core A _ Core B i1 Core C _ Core D
Regs Regs E E Regs Regs
L1 L1 L1 L1 SR L1 L1 L1
d-cache i-cache d-cache i-cache i . | d-cache i-cache d-cache i-cache

L3 unified cache

Main memory

6 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

SIMD computers

 Definition: A single instruction stream is applied to multiple data

elements.
« One program text
* One instruction counter Liile i bl
« Distinct data streams per Proc
« Examples: Vector Procs, GPUs PE- PU |+
§ »| PUJ |+
= PE
=
= »| PU |«
PE
»| PU |«
PE

7 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

“CPU-Style” Cores

The “CPU-Style” core is designed to make individual threads speedy.

Fetch/Decode | Out-of -order control logic

- Branch predictor logic

Memory pre fetch unit

Execution
contexts
| Large data cache
“Execution context” == memory and hardware associated

to a specific stream of instructions (e.g. a thread)
Multiple cores lead to MIMD computers

8 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

GPU Design Idea #1: more slow cores

The first big idea that differentiates GPU and CPU core design:
slim down the footprint of each core.

Fetch/Decode I

Execution
contexts

Idea #1:

Remove the modules that
help a single instruction
execute fast.

—

Slides and graphics based on presentations
from Andreas Klockner and Kayvon Fatahalian

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

http://cs.nyu.edu/courses/fall10/G22.2945-001/slides/lect6.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

10

GPU Design Idea #1: more slow cores

I | | | |
I
e 2
I [| |1 |
I | | | |
Lo J) | D | | Ced -I
|l 2
I [| |1 |
Lo I | G| | Ced | | B
| I I I See: Andreas Klockner
and Kayvon Fatahalian

COMP 322, Spring 2017 (V. Sarkar, M. Joyner) @

http://cs.nyu.edu/courses/fall10/G22.2945-001/slides/lect6.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

GPU Design Idea #2: lock stepping

In the GPU rendering context, the instruction streams are typically very similar.

Design for a “single instruction multiple data” SIMD model:
share the cost of the instruction stream across many ALUs (i.e. single program
counter for multiple “cores”)

Fetch/Decode Fetch/Decode
>

Execution

Ct Ct Ct Ct
contexts shared

\ memory ct || er [let || et
SIMD model
Shared Ctx Data

See: Andreas Klockner
and Kayvon Fatahalian

r i
11 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) ©

http://cs.nyu.edu/courses/fall10/G22.2945-001/slides/lect6.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

GPU Design Idea #2: branching ?

i 1R b || | |

e T e
EEEN EEEE RN EEEn

P e
— | 1 | || ! il | ! |

Question:

What happens when the instruction streams
include branching ?

How can they execute in lock step?

See: Andreas Klockner
and Kayvon Fatahalian

-
12

http://cs.nyu.edu/courses/fall10/G22.2945-001/slides/lect6.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

GPU Design Idea #2: lock stepping w/

branching
Low Jlau JLau Jav Jlaw JLaw Jlan Jan]
Time
| |)|) Non branching code;
ERENENENEREREREN ifflag > 0){ /* branch */
N | -
y = 2.3%Xx;
}
else{
| | | | | X = sin(y);
| | ||| h 2.1°%;
Non branching code;
| | ||)
v

The cheap branching approach means that some ALUs are idle as all ALUs
traverse all branches [executing NOPs if necessary]

In the worst possible case we could see 1/8 of maximum performance.

13 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

GPU Design Idea #3: latency hiding

Time
[JC JC I JC JC JE I 1 work on registers;
[JC JC I JC JC JC I 1 work on registers;
DR CECEEEE | ok on registers;

% % y: - - > - - Ioa-d registers from
main memory;

It takes O(1000) cycles to load data from
off chip memory into the SM registers file

These ALUs are idled (stalled) after a load

See: Andreas Klockner
and Kayvon Fatahalian

14 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

http://cs.nyu.edu/courses/fall10/G22.2945-001/slides/lect6.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

GPU Design Idea #3: latency hiding

Idea #3: enable fast context switching so the ALUs
can efficiently alternate between different tasks.

Fetch/Decode Fetch/Decode

TR | T P TR | PN PPN Y
Lo [] [0 et et it (i
) L

>
Ct || ct || ct || ct 1 |12
|]
Ct Ct Ct Ct _ j
Shared Ctx Data | 3 E j 4)

See: Andreas Klockner
and Kayvon Fatahalian

15 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

http://cs.nyu.edu/courses/fall10/G22.2945-001/slides/lect6.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

GPU Design Idea #3: context switching
T | e e T | | e | e | e

- EEERE R ERREREEREE .1 : work on registers;
2 K K2 K2 KN ERR B B | Cix1: work on registers;
L JreiarJjegqey,y
[JC JC JC JCJC JCC

Ctx1: load request, switch context;
------ Ctx3: work on registers;
[[[[[P [P R F| ctx3: work on registers;
-------- Ctx3: work on registers;

Ctx3: load request, switch context;

] [s s [
[0 [0 [[0 [0 [E B EB | 12 ok on registors.:
I 0 O) 2 v on g

Ctx2: load request, switch context;

-------- Ctx1: load done so continue

\4

See: Andreas Klockner
and Kayvon Fatahalian

r i
16 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) &

http://cs.nyu.edu/courses/fall10/G22.2945-001/slides/lect6.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

Summary: CPUs and GPUs have
fundamentally different design

GPU = Graphics Processing Unit

Single CPU core Multiple GPU processors

- Strearning Multiprocessor

- >
-

-

-

-

-

GPUs are provided to accelerate graphics, but they can also be used
for non-graphics applications that exhibit large amounts of data
parallelism and require large amounts of “streaming” throughput

= SIMD parallelism within an SM, and SPMD parallelism across SMs

17 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) 7

Host vs. Device

"

S8
4

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

18

19

Host vs. Device

The GPU has its own independent memory space.
The GPU brick is a separate compute sidecar.

We refer to:
— the GPU as a “DEVICE”
— the CPU as the “HOST”

An array that is in HOST-attached memory is not directly visible to the
DEVICE, and vice versa.

To load data onto the DEVICE from the HOST:
— We allocate memory on the DEVICE for the array
— We then copy data from the HOST array to the DEVICE array

To retrieve results from the DEVICE they have to be copied from the
DEVICE array to the HOST array.

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Execution of a CUDA program

Host Code
(small number of threads)

Explicit host-device communication

Device Kernel [%“ > S S SIS

((((((((
)))))))))))))))

(large number of threads) — |||E55555 | S5 | S8

Explicit host-device communication

Host Code
(small number of threads)

Explicit host-device communication
Device Kernel [SIS >

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

(large number of threads) — ||[88%% |&55% |47

))))))))

Explicit host-device communication

Host Code
(small number of threads)

20 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) @

Outline of a CUDA main program

pseudo_cuda_code.cu:
__global__ void kernel(arguments) {

instructions for a single GPU thread;

}

main(){

set up GPU arrays;

copy CPU data to GPU;

kernel <<< # thread blocks, # threads per block >>> (arguments);

copy GPU data to CPU;

}

21 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

CUDA Storage Classes + Thread
Hierarchy

Thread « Local Memory: per-thread
— Private per thread

§<—> Local Memory — Auto variables, register spill

e Shared Memory: per-Block

Slock — Shared by threads of the same blo
Shared — Inter-thread communication
Memory e Global Memory: per-application
— Shared by all threads
. — Inter-Grid communication
_ Grid 0
R || D || >
< (& PLLLLLLLK < < < (< H
— obsz Sequential
_ Grid 1 oMo Grids
N || IS || > > in Time
< ; < ; < ; < H

22 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) @

23

CUDA Host-Device Data Transfer

cudaError_t cudaMemcpy(void* dst, const

void* src, size_t count, enum (Device) Grid

cudaMemcpyKind kind) Block (0, 0)

Copies count bytes from the memory area
pointed to by src to the memory area
pointed to by dst, where kind is one of

Block (1, 0)

— cudaMemcpyHostToHost

— cudaMemcpyHostToDevice
— cudaMemcpyDevice ToHost

— cudaMemcpyDeviceToDevice
The memory areas may not overlap

Calling cudaMemcpy() with dst and src
pointers that do not match the direction of

the copy results in an undefined behavior.

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Matrix multiplication kernel code in
CUDA --- SPMD model with 2D index

// Matrixmultiplication kernel - thread specification
__global__void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// 2D Thread ID

int tx =threadldx.x;

int ty = threadldx.y;

// Pvalue stores the Pd element that is computed by the thread
float Pvalue =0;

for (int k=0; k <Width; ++k)

{
float Mdelement =Md[ty * Width + k];
float Ndelement = Nd[k * Width + tx];
Pvalue += Mdelement * Ndelement;

}

// Write the matrix to device memory each thread writes one element
Pd[ty * Width + tx] =Pvalue;

24 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) @

Host Code in C for Matrix Multiplication

1. Yoid MatrixMultiplication(float* M, float* N, float* P, int Width)
2. int size = Width*Width*sizeof (float); // matrix size

3. float* Md, Nd, Pd; // pointers to device arrays

4, cudaMalloc ((void**) &Md, size); // allocate Md on device

5. cudaMemcpy (Md, M, size, cudaMemcpyHostToDevice); // copy M to Md
6. cudaMalloc ((void**) &Nd, size); // allocate Nd on device

7. cudaMemcpy (Nd, M, size, cudaMemcpyHostToDevice); // copy N to Nd
8. cudaMalloc ((void**) &Pd, size); // allocate Pd on device

9. dim3 dimBlock (Width,Width); dim3 dimGrid(1,1);

10. // launch kernel (equivalent to “async at(GPU), forall, forall”

11. MatrixMulKernel<<<dimGrid,dimBlock>>>(Md, Nd, Pd, Width) ;

12. cudaMemcpy (P, Pd, size, cudaMemcpyDeviceToHost); // copy Pd to P
13. // Free device matrices

14 cudaFree (Md) ; cudaFree (Nd); cudaFree (Pd) ;

15. 1}

25 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Summary of key features in CUDA

CUDA construct Related HJ/Java constructs
K li tion, t -pl
<<e£r.1fe.>|r;\>/oca ion async at(gpu-place)

1D/2D grid with 1D/2D/3D Outer 1D/2D forall with inner 1D/2D/3D forall
blocks of threads

Intra-block barrier, HJ forall-next on implicit phaser for inner forall
__syncthreads()
cudaMemcpy() No direct equivalent in HJ/Java (can use

System.arraycopy() if needed)

Storage classes: local, No direct equivalent in HJ/Java (method-local
shared, global variables are scalars)

26 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Worksheet #35: Branching in SIMD code

Name: Netid:

Consider SIMD execution of the following pseudocode with 8 threads.
Assume that each call to doWork(x) takes x units of time, and ignore
all other costs. How long will this program take when executed on 8
GPU cores, taking into consideration the branching issues discussed
in Slide 9?

.int tx = threadIdx.x; // ranges from 0 to 7
if (tx % 2 = 0) {

S1: dowork(l); // Computation S1 takes 1 unit of time
}

else {
S2: dowork(2); // Computation S2 takes 2 units of time
}

NOoOORODN =

25 COMP 322, Spring 2017 (V. Sarkar, M. Joyner) @

28

BACKUP SLIDES START HERE

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

HJ abstraction of a CUDA kernel
invocation: async at + forall + forall

Hast Deyv oo
async at(GPU) arid 1 forall(blockIdx)
Kermszl > Block Black
1 (0. O} {1, 0}
Blook,.? I Block 1
0,7 1.1
~
- s \
v r 1T
s L [
async at(6PV) . ‘Grcz .
I' "‘ : l‘
Karmel 3 3 o
2 | J P

Block (1,1}

" forall(threadIdx)

COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

