
COMP 322: Fundamentals of
Parallel Programming

Lecture 39: Review of Lectures 18 - 38
(Scope of Exam 2)

Instructors: Vivek Sarkar, Mack Joyner
Department of Computer Science, Rice University

{jmg3, vsarkar, mjoyner}@rice.edu

http://comp322.rice.edu/

COMP 322 Lecture 38 19 April 2017

HJ isolated construct
(Lecture 20 — Start of Module 2, Concurrency)

isolated (() -> <body>);

• Isolated construct identifies a critical section

• Two tasks executing isolated constructs are guaranteed to perform them in mutual exclusion
èIsolation guarantee applies to (isolated, isolated) pairs of constructs, not to (isolated,

non-isolated) pairs of constructs

• Nondeterminism — two isolated constructs may be executed in either order without a data
race, but with a nondeterministic outcome

• Blocking parallel constructs are forbidden inside isolated constructs
—Isolated constructs must not contain any parallel construct that performs a blocking

operation e.g., finish, future get, next
—Non-blocking async operations are permitted, but isolation guarantee only applies to

creation of async, not to its execution

• Isolated constructs can never cause a deadlock
— Other techniques used to enforce mutual exclusion (e.g., locks — which we will learn

later) can lead to a deadlock, if used incorrectly

2 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Object-based isolation
isolated(obj1, obj2, …, () -> <body>)

• In this case, programmer specifies list of objects for which
isolation is required

• Mutual exclusion is only guaranteed for instances of isolated
constructs that have a common object in their object lists
—Serialization edges are only added between isolated steps with

at least one common object (non-empty intersection of objstec
lists)

—Standard isolated is equivalent to “isolated(*)” by default i.e.,
isolation across all objects

• Inner isolated constructs are redundant — they are not allowed to
“add” new objects

3 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree
4. boolean makeParent(final V n) {
5. return isolatedWithReturn(this, () -> {

6. if (parent == null) { parent = n; return true; }
7. else return false; // return true if n became parent
8. });
9. } // makeParent
10. void compute() {
11. for (int i=0; i<neighbors.length; i++) {
12. final V child = neighbors[i];
13. if (child.makeParent(this))
14. async(() -> { child.compute(); });
15. }
16. } // compute
17. } // class V
18. . . .
19. root.parent = root; // Use self-cycle to identify root
20. finish(() -> { root.compute(); });
21. . . .

Worksheet #20: Parallel Spanning Tree Algorithm using
object-based isolated construct

4 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

java.util.concurrent. AtomicReference methods and
their equivalent isolated statements

• Body Level One
— Body Level Two

– Body Level Three
Body Level Four

Body Level Five

5 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Methods in java.util.concurrent.AtomicReference class and their
equivalent HJ object-isolated statements. Variable v refers to an
AtomicReference object in column 2 and to a standard non-atomic
Java object in column 3. ref refers to a field of type Object.

AtomicReference<T> can be used to specify a type parameter for the
reference.

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. AtomicReference<V> parent; // output value of parent in spanning tree
4. boolean makeParent(final V n) {
5. // compareAndSet() is a more efficient implementation of
6. // object-based isolation
7. return parent.compareAndSet(null, n);
8. } // makeParent
9. void compute() {
10. for (int i=0; i<neighbors.length; i++) {
11. final V child = neighbors[i];
12. if (child.makeParent(this))
13. async(() -> { child.compute(); }); // escaping async
14. }
15. } // compute
16. } // class V
17. . . .
18. root.parent = root; // Use self-cycle to identify root
19. finish(() -> { root.compute(); });
20. . . .

Atomic Variables represent a special case of
Object-based isolation

6 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Read-Write Object-based isolation in HJ
(Lecture 21)

isolated(readMode(obj1),writeMode(obj2), …, () -> <body>);

• Programmer specifies list of objects as well as their read-write modes for which isolation is
required

• Not specifying a mode is the same as specifying a write mode (default mode = read + write)
• Mutual exclusion is only guaranteed for instances of isolated statements that have a non-empty

intersection in their object lists such that one of the accesses is in writeMode
• Sorted List example
1. public boolean contains(Object object) {
2. return isolatedWithReturn(readMode(this), () -> {
3. Entry pred, curr;
4. ...
5. return (key == curr.key);
6. });
7. }
8.
9. public int add(Object object) {
10. return isolatedWithReturn(writeMode(this), () -> {
11. Entry pred, curr;
12. ...
13. if (...) return 1; else return 0;
14. });
15. }

7 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Q: Compute the WORK and CPL metrics for this program with a
global isolated construct. Indicate if your answer depends on the
execution order of isolated constructs.

1. finish(() -> {
2. for (int i = 0; i < 5; i++) {
3. async(() -> {
4. doWork(2);
5. isolated(() -> { doWork(1); });
6. doWork(2);
7. }); // async
8. } // for
9. }); // finish

Worksheet #21a solution:
Abstract Metrics with Isolated Construct

8 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Answer: WORK = 25, CPL = 9. These metrics do not depend on
the execution order of isolated constructs.

Q: Compute the WORK and CPL metrics for this program with an
object-based isolated construct. Indicate if your answer depends
on the execution order of isolated constructs.

1. finish(() -> {
2. // Assume X is an array of distinct objects
3. for (int i = 0; i < 5; i++) {
4. async(() -> { // Async task A_i
5. doWork(2);
6. isolated(X[i], X[i+1],
7. () -> { doWork(1); });
8. doWork(2);
9. }); // async
10. } // for
11. }); // finish

Worksheet #21b solution:
Abstract Metrics with Object-Based Isolated Construct

9 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Answer: WORK = 25, CPL depends on execution order. Best-case CPL = 6,
worst-case CPL = 7. (Worst-case example: if A_1, A_4 execute in parallel
first, then the isolated sections in A_2, A_3 must be serialized thereafter.)

Actor states
l New: Actor has been created

l e.g., email account has been
created, messages can be received

l Started: Actor can process
messages

l e.g., email account has been
activated

l Terminated: Actor will no longer
processes messages

l e.g., termination of email account
after graduation

Actor Life Cycle (Lecture 22)

10 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

1. finish(() -> {
2. int threads = 4;
3. int numberOfHops = 10;
4. ThreadRingActor[] ring =  

 new ThreadRingActor[threads];
5. for(int i=threads-1;i>=0; i--) {
6. ring[i] = new ThreadRingActor(i);
7. ring[i].start();
8. if (i < threads - 1) {
9. ring[i].nextActor(ring[i + 1]);
10. } }
11. ring[threads-1].nextActor(ring[0]);
12. ring[0].send(numberOfHops);
13. }); // finish  

ThreadRing (Coordination) Example

11 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

3 1

0

2

14. class ThreadRingActor
15. extends Actor<Integer> {
16. private Actor<Integer> nextActor;
17. private final int id;
18. ...
19. public void nextActor( 

 Actor<Object> nextActor) {...}

21. protected void process(Integer n) {
22. if (n > 0) {
23. println("Thread-" + id +
24. " active, remaining = " + n);
25. nextActor.send(n - 1);
26. } else {
27. println("Exiting Thread-"+ id);
28. nextActor.send(-1);
29. exit();
30. } } }

Worksheet #22 solution:
Interaction between finish and actors

12 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

What output will be printed if the end-finish operation from slide 13 is
moved from line 13 to line 11 as shown below?

1. finish(() -> {
2. int numThreads = 4;
3. int numberOfHops = 10;
4. ThreadRingActor[] ring = new ThreadRingActor[numThreads];
5. for(int i=numThreads-1;i>=0; i--) {
6. ring[i] = new ThreadRingActor(i);
7. ring[i].start(); // like an async
8. if (i < numThreads - 1) {
9. ring[i].nextActor(ring[i + 1]);
10. } }
11. }); // finish
12.ring[numThreads-1].nextActor(ring[0]);
13.ring[0].send(numberOfHops);

 

Deadlock (no output): the
end-finish operation in line
11 waits for all the actors
started in line 7 to
terminate, but the actors
are waiting for the
message sequence
initiated in line 13 before
they call exit().

Synchronous Reply using Pause/Resume
(Lecture 23)

13 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

l Actors are asynchronous, sync. replies require blocking operations
l We need notifications from recipient actor on when to resume
l Resumption needs to be triggered on sender actor

l Use DDFs and asyncAwait
1. class SynchronousSenderActor
2. extends Actor<Message> {
3. void process(Msg msg) {
4. ...
5. DDF<T> ddf = newDDF();
6. otherActor.send(ddf);
7. pause(); // non-blocking
8. asyncAwait(ddf, () -> {
9. T synchronousReply = ddf.get();
10. println("Response received");
11. resume(); // non-blocking
12. });
13. ...
14. } }

1. class SynchronousReplyActor
2. extends Actor<DDF> {
3. void process(DDF msg) {
4. ...
5. println("Message received");
6. // process message
7. T responseResult = ...;
8. msg.put(responseResult);
9. ...
10. } }

Worksheet #23:
Analyzing Parallelism in an Actor Pipeline

Consider a three-stage pipeline of actors (as in slide 5), set up so that
P0.nextStage = P1, P1.nextStage = P2, and P2.nextStage = null. The
process() method for each actor is shown below. Assume that 100 non-null
messages are sent to actor P0 after all three actors are started, followed by a
null message. What will the total WORK and CPL be for this execution?
Recall that each actor has a sequential thread.
Solution: WORK = 300, CPL = 102
...

14 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998

P0

P4

P3

P5

P2

P1

Time

Figure 5.6 Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0 P0 P1 P2 P3 P4 P5

(a) Pipeline structure

(b) Timing diagram

P8

P7

P9

P6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

P7P6 P8 P9

Input sequence

p " 1 n

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8

d0 d1 d2 d3 d4 d5 d6 d7

d0 d1 d2 d3 d4 d5 d6

1. protected void process(final Object msg) {
2. if (msg == null) {
3. exit(); //actor will exit after returning from process()
4. } else {
5. doWork(1); // unit work
6. }
7. if (nextStage != null) {
8. nextStage.send(msg);
9. }
10. } // process()
 

COMP 322, Spring 2017 (V.Sarkar, M.Joyner)

Synchronized statements and methods in
Java (Lecture 24)

• Every Java object has an implicit lock acquired via:
— synchronized statements

– synchronized(foo) { // acquire foo’s lock  
 // execute code while holding foo’s lock 
} // release foo’s lock

— synchronized methods
– public synchronized void op1() { // acquire ‘this‘ lock 

 // execute method while holding ‘this’ lock 
} // release ‘this’ lock

• Java language does not enforce any relationship between object used for locking and
objects accessed in isolated code
— If same object is used for locking and data access, then the object behaves like a

monitor
• Locking and unlocking are automatic

— Locks are released when a synchronized block exits
• By normal means: end of block reached, return, break
• When an exception is thrown and not caught

15

Dynamic Order Deadlocks
• There are even more subtle ways for threads to deadlock due to inconsistent lock ordering

— Consider a method to transfer a balance from one account to another:
public class SubtleDeadlock {
 public void transferFunds(Account from,
 Account to,
 int amount) {
 synchronized (from) {
 synchronized (to) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }
 }
— What if one thread tries to transfer from A to B while another tries to transfer from B to A ?

Inconsistent lock order again – Deadlock!

16 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Avoiding Dynamic Order Deadlocks
• The solution is to induce a lock ordering
— Here, uses an existing unique numeric key, acctId, to establish an order

public class SafeTransfer {
 public void transferFunds(Account from, Account to, int amount) {
 Account firstLock, secondLock;  

 if (fromAccount.acctId == toAccount.acctId) 
 throw new Exception(“Cannot self-transfer”); 
 else if (fromAccount.acctId < toAccount.acctId) { 
 firstLock = fromAccount;  
 secondLock = toAccount;  
 }  
 else {  
 firstLock = toAccount;  
 secondLock = fromAccount;  
 }  
 synchronized (firstLock) {

 synchronized (secondLock) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }  

 }

17 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Deadlock avoidance in HJ with
object-based isolation

• HJ implementation ensures that any locks are acquired in the same order (HJ’s use of locks to implement
isolated is hidden from the user)

• ==> no deadlock possible with isolated construct
 public class NoDeadlock1 {
 . . .
 public void leftHand() {
 isolated(lock1, lock2) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);

 }
 }
 public void rightHand() {
 isolated(lock2,lock1) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 }

18 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

COMP 322, Spring 2017 (V.Sarkar, M. Joyner)

One possible solution to Worksheet #24
1) Write a sketch of the pseudocode for a Java threads program that
exhibits a data race using start() and join() operations.

1. // Start of thread t0 (main program)

2. sum1 = 0; sum2 = 0; // Assume that sum1 & sum2 are fields

3. // Compute sum1 (lower half) and sum2 (upper half) in parallel

4. final int len = X.length;

5. Thread t1 = new Thread(() -> {

6. for(int i=0 ; i < len/2 ; i++) sum1+=X[i];});

7. t1.start();

8. Thread t2 = new Thread(() -> {

9. for(int i=len/2 ; i < len ; i++) sum2+=X[i];});

10. t2.start();

11. int sum = sum1 + sum2; //data race between t0 & t1, and t0 & t2

12. t1.join(); t2.join();

19

COMP 322, Spring 2017 (V.Sarkar, M. Joyner)

One possible solution to Worksheet #24
(contd)

2) Write a sketch of the pseudocode for a Java threads program that
exhibits a data race using synchronized statements.

1. // Start of thread t0 (main program)

2. sum = 0; // static int field

3. Object a = new ... ;

4. Object b = new ... ;

5. Thread t1 = new Thread(() ->

6. { synchronized(a) { sum++; } });

7. Thread t2 = new Thread(() ->

8. { synchronized(b) { sum++; } });

9. t1.start();

10. t2.start(); // data race between t1 & t2

11. t1.join(); t2.join();

20

java.util.concurrent.locks.Lock interface
(Lecture 26)

1. interface Lock {

2. // key methods

3. void lock(); // acquire lock

4. void unlock(); // release lock

5. boolean tryLock();

6. // Either acquire lock and return true, or return false if lock is

7. /// not obtained. A call to tryLock() never blocks!

8. Condition newCondition(); // associate a new condition

9. // variable with the lock 

}

• java.util.concurrent.locks.Lock interface is implemented by
java.util.concurrent.locks.ReentrantLock class

21 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Worksheet #26a solution: use of tryLock()
Rewrite the transferFunds() method below to use j.u.c. locks with calls to
tryLock (see slide 8) instead of synchronized. Your goal is to write a correct
implementation that never deadlocks, unlike the buggy version below (which
can deadlock). Assume that each Account object already contains a reference
to a ReentrantLock object dedicated to that object e.g., from.lock() returns the
lock for the from object. Sketch your answer below using pseudocode.

1. public void transferFunds(Account from, Account to, int amount) {
2. while (true) {
3. // assume that trylock() does not throw an exception
4. boolean fromFlag = from.lock.trylock();
5. if (!fromFlag) continue;
6. boolean toFlag = to.lock.trylock();
7. if (!toFlag) { from.lock.unlock(); continue; }
8. try { from.subtractFromBalance(amount);
9. to.addToBalance(amount); break; }
10. finally { from.lock.unlock(); to.lock.unlock(); }
11. } // while
12. }

22 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

java.util.concurrent.locks.ReadWriteLock
interface

 interface ReadWriteLock {  
 Lock readLock();  
 Lock writeLock();

 }
• Even though the interface appears to just define a pair of locks, the

semantics of the pair of locks is coupled as follows
— Case 1: a thread has successfully acquired writeLock().lock()

– No other thread can acquire readLock() or writeLock()
— Case 2: no thread has acquired writeLock().lock()

– Multiple threads can acquire readLock()
– No other thread can acquire writeLock()

• java.util.concurrent.locks.ReadWriteLock interface is implemented
by java.util.concurrent.locks.ReadWriteReentrantLock class

23 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

class Hashtable<K,V> {
 …
 // coarse-grained, one lock for table
 ReadWriteLock lk = new ReentrantReadWriteLock();
 V lookup(K key) {
 int bucket = hasher(key);
 lk.readLock().lock(); // only blocks writers
 … read array[bucket] …
 lk.readLock().unlock();
 }
 void insert(K key, V val) {
 int bucket = hasher(key);
 lk.writeLock().lock(); // blocks readers and writers

 … write array[bucket] …
 lk.writeLock().unlock();
 }
}

Example code

24 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Linearizability of Concurrent Objects
(Lecture 26)

Concurrent object
• A concurrent object is an object that can correctly handle methods

invoked in parallel by different tasks or threads
— Examples: Concurrent Queue, AtomicInteger

Linearizability
• Assume that each method call takes effect “instantaneously” at some

distinct point in time between its invocation and return.
• An execution is linearizable if we can choose instantaneous points

that are consistent with a sequential execution in which methods are
executed at those points

• An object is linearizable if all its possible executions are linearizable

25 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Example 2: is this execution
linearizable?

time

q.enq(x)

q.enq(y)

q.deq():yq.enq(x)

q.enq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

26 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Task T1

Task T2

not linearizable

Worksheet #26b solution:
Linearizability of method calls on a concurrent object

Is this a linearizable execution for a FIFO queue, q?

27 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

No! q.enq(x) must precede q.enq(y) in all linear sequences of
method calls invoked on q. It is illegal for the q.deq() operation to
return y.

Organization of a Distributed-Memory
Multiprocessor (Lecture 28 — Start of Module 3)

Figure (a)
• Host node (Pc) connected to a cluster of processor nodes (P0 … Pm)
• Processors P0 … Pm communicate via an interconnection network which could be

standard TCP/IP (e.g., for Map-Reduce) or specialized for high performance
communication (e.g., for scientific computing)

Figure (b)
• Each processor node consists of a processor, memory, and a Network Interface Card

(NIC) connected to a router node (R) in the interconnect

28 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Processors communicate by sending messages via an interconnect

Our First MPI Program  
(mpiJava version)

1. import mpi.*;
2. class Hello {
3. static public void main(String[] args) {
4. // Init() be called before other MPI calls
5. MPI.Init(args);
6. int npes = MPI.COMM_WORLD.Size()
7. int myrank = MPI.COMM_WORLD.Rank() ;
8. System.out.println(”My process number is ” + myrank);
9. MPI.Finalize(); // Shutdown and clean-up
10. }
11. }

main() is enclosed in an
implicit “forall” --- each
process runs a separate
instance of main() with
“index variable” = myrank

29 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Example of Send and Recv
1. import mpi.*;
2. class myProg {
3. public static void main(String[] args) {
4. int tag0 = 0; int tag1 = 1;
5. MPI.Init(args); // Start MPI computation
6. if (MPI.COMM_WORLD.rank() == 0) { // rank 0 = sender
7. int loop[] = new int[1]; loop[0] = 3;

8. MPI.COMM_WORLD.Send("Hello World!", 0, 12, MPI.CHAR, 1, tag0);
9. MPI.COMM_WORLD.Send(loop, 0, 1, MPI.INT, 1, tag1);
10. } else { // rank 1 = receiver
11. int loop[] = new int[1]; char msg[] = new char[12];
12. MPI.COMM_WORLD.Recv(msg, 0, 12, MPI.CHAR, 0, tag0);
13. MPI.COMM_WORLD.Recv(loop, 0, 1, MPI.INT, 0, tag1);
14. for (int i = 0; i < loop[0]; i++)
15. System.out.println(msg);
16. }
17. MPI.Finalize(); // Finish MPI computation
18. }
19. }

Send() and Recv() calls are blocking operations

30 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

1. int a[], b[];
2. ...
3. if (MPI.COMM_WORLD.rank() == 0) {
4. MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
5. MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
6. }
7. else {
8. Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 2);
9. Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 1);
10. System.out.println(“a = “ + a + “ ; b = “ + b);
11.}
12. ...

Worksheet #28 solution: MPI send and receive

Question: In the space below, indicate what values you expect the print
statement in line 10 to output (assuming the program is invoked with 2
processes).

31 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Answer: Nothing! The program will deadlock due to mismatched tags, with
process 0 blocked at line 4, and process 1 blocked at line 8.

Collective Communications (Lecture 29)
• A popular feature of MPI is its family of collective communication operations.
• Each collective operation is defined over a communicator (most often,

MPI.COMM_WORLD)
— Each collective operation contains an implicit barrier. The operation completes

and execution continues when all processes in the communicator perform the same
collective operation.

— A mismatch in operations results in deadlock e.g.,
Process 0: MPI.Bcast(...)
Process 1: MPI.Bcast(...)
Process 2: MPI.Gather(...) ….

• A simple example is the broadcast operation: all processes invoke the operation,
all agreeing on one root process. Data is broadcast from that root.

void Bcast(Object buf, int offset, int count, Datatype type, int root)

32 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

MPI Reduce

void MPI.COMM_WORLD.Reduce(
 Object sendbuf /* in */,
 int sendoffset /* in */,
 Object recvbuf /* out */,
 int recvoffset /* in */,
 int count /* in */,
 MPI.Datatype datatype /* in */,
 MPI.Op operator /* in */,
 int root /* in */)

MPI.COMM_WORLD.Reduce(msg, 0, result, 0, 1, MPI.INT, MPI.SUM, 2);

Rank0
15

Rank1
10

Rank2
12

Rank3
8

Rank4
4

49

33 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Worksheet #29 solution: MPI Gather

1. MPI.Init(args) ;
2. int myrank = MPI.COMM_WORLD.Rank() ;
3. int numProcs = MPI.COMM_WORLD.Size() ;
4. int size = ...;
5. int[] sendbuf = new int[size];
6. int[] recvbuf = new int[???];
7. . . . // Each process initializes sendbuf
8. MPI.COMM_WORLD.Gather(sendbuf, 0, size, MPI.INT,
9. recvbuf, 0, size, MPI.INT,
10. 0 /*root*/);
11. . . .
12. MPI.Finalize();

34 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Indicate what value should be
provided instead of ??? in line 6 to
minimize space, and how it should
depend on myrank.

Solution: myrank == 0 ? (size * numProcs) : 0

Worksheet #32 solution:
UPC data distributions

1. shared int a[100],b[100], c[100];
2. int i;
3. upc_forall (i=0; i<100; i++; (i*THREADS)/100)
4. a[i] = b[i] * c[i];

35 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

In the following example (which is similar to slide 17, but without the blocking), assume that each
UPC array is distributed by default across threads with a cyclic distribution. In the space below, a)
identify an iteration of the upc_forall construct for which all array accesses are local, and b) an
iteration for which all array accesses are non-local (remote). You can assume any values for
THREADS in the 2…99 range that you choose for parts a) and b). Explain your answer in each case.

Note that each shared array’s distribution always starts with the first element assigned to thread 0
(not where the previous array may have ended).

Solution:
• Iteration 0 has affinity with thread 0, and accesses a[0], b[0], c[0], all

of which are located locally at thread 0
• Iteration 1 has affinity with thread 0, and accesses a[1], b[1], c[1], all

of which are located remotely at thread 1

0 1 2 3 4 5 6 . . .index

index owner in
2-thread case

Worksheet #33: Combining Task and MPI
parallelism

1. main() {
2. if (my rank == 0)
3. finish { // F1
4. async await(req) doWork(1);
5. MPI_Irecv(rank 1, … , req);
6. doWork(1);
7. }
8. else {
9. doWork(1);
10. MPI_Send(rank 0, …);
11. }
12. } // main

Compute the critical
path length for the
MPI program shown
on the right in
pseudocode,
assuming that it is
executed with 2
processes/ranks.
(Assume that the
send/recv calls in
lines 5 & 10 match
with each other.)

Solution: CPL = 2,
because lines 6 and 9
can execute in parallel
with each other

36 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Co-locating async tasks in “places”
(Lecture 34)

Place 1

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

Place 0 Place 1

Place 2 Place 3

// Main program starts at place 0
asyncAt(place(0), () -> S1);
asyncAt(place(0), () -> S2);

asyncAt(place(1), () -> S3);
asyncAt(place(1), () -> S4);
asyncAt(place(1), () -> S5);

asyncAt(place(2), () -> S6);
asyncAt(place(2), () -> S7);
asyncAt(place(2), () -> S8);

asyncAt(place(3), () -> S9);
asyncAt(place(3), () -> S10);

37 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Worksheet #34 solution: impact of distribution
on parallel completion time (rather than locality)

1. public void sampleKernel(
2. int iterations, int numChunks, Distribution dist) {
3. for (int iter = 0; iter < iterations; iter++) {
4. finish(() -> {
5. forseq (0, numChunks - 1, (jj) -> {
6. asyncAt(dist.get(jj), () -> {
7. doWork(jj);
8. // Assume that time to process chunk jj = jj units
9. });
10. });
11. });
12. } // for iter
13. } // sample kernel

•Assume an execution with n places, each place with one worker thread
•Will a block or cyclic distribution for dist have a smaller abstract
completion time, assuming that all tasks on the same place are serialized
with one worker per place?

Answer: Cyclic distribution because it leads to better load balance (locality
was not a consideration in this problem)

38 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Worksheet #35 Solution: 
Finding maximal index of goal in matrix

Below is a code fragment intended to find the maximal (largest) index of a goal value that
occurs multiple times in the input matrix. What logical error(s) are there in the code?

39 COMP 322, Spring 2016 (V. Sarkar, S. Imam)

1. class AsyncFinishEurekaSearchMaxIndexOfGoal {
2. HjEureka eurekaFactory() {
3. comparator = (cur, newVal) -> { // cur is initially [-1, -1]  

 (cur.x==newVal.x) ? (cur.y - newVal.y) : (cur.x - newVal.x) }
4. return new MaximaEureka([-1, -1], comparator)
5. }
6. int[] doWork(matrix, goal) {
7. val eu = eurekaFactory()
8. finish (eu, () -> { // eureka registration
9. forasync (0, matrix.length - 1, (r) ->
10. procRow(matrix(r), r, goal));
11. });
12. return eu.get()
13. }
14. void procRow(array, r, goal) {
15. for (int c = 0; c < array.length(); c++)
16. check([r, c]) // terminate if comparator returns negative
17. if goal.match(array(c)) offer([r, c]) // updates cur in eureka
18. } }

for (int c = array.length() - 1; c >= 0; c--)

0 … 10 … 15 …
…
5 M
…
10 M M

The task terminates when
check([r,c]) is called and the
comparator has cur smaller than
[r,c]. We need to ensure the
iteration order in our code is
such that the comparator
returning negative means we
cannot produce an offer([r’,c’])
where [r’, c’] is greater than
the value of cur.

 [101 111 011 001 100 010 111 010]

1.A = [5 7 3 1 4 2 7 2]
2.A⟨0⟩ = [1 1 1 1 0 0 1 0] //lowest bit
3.A←split(A,A⟨0⟩) = [4 2 2 5 7 3 1 7]
4.A⟨1⟩ = [0 1 1 0 1 1 0 1] // middle bit
5.A←split(A,A⟨1⟩) = [4 5 1 2 2 7 3 7]
6.A⟨2⟩ = [1 1 0 0 0 1 0 1] // highest bit
7.A←split(A,A⟨2⟩) = [1 2 2 3 4 5 7 7]

Worksheet #36 problem statement:
Parallelizing the Split step in Radix Sort

40 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

The Radix Sort algorithm loops over the bits in the binary representation of the
keys, starting at the lowest bit, and executes a split operation for each bit as
shown below. The split operation packs the keys with a 0 in the corresponding bit
to the bottom of a vector, and packs the keys with a 1 to the top of the same
vector. It maintains the order within both groups. The sort works because each
split operation sorts the keys with respect to the current bit and maintains the
sorted order of all the lower bits. Your task is to show how the split operation can
be performed in parallel using scan operations, and to explain your answer.

Worksheet #36 solution:
Parallelizing the Split step in Radix Sort

41 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

1.4 Recurrence Equations 47

procedure split(A, Flags)

I-down ← +-prescan(not(Flags))

I-up ← n - +-scan(reverse-order(Flags))

in parallel for each index i
if (Flags[i])
Index[i] ← I-up[i]

else

Index[i] ← I-down[i]
result ← permute(A, Index)

A = [5 7 3 1 4 2 7 2]
Flags = [1 1 1 1 0 0 1 0]

I-down = [0 0 0 0 0 1 2 2]
I-up = [3 4 5 6 6 6 7 7]
Index = [3 4 5 6 0 1 7 2]

permute(A, Index) = [4 2 2 5 7 3 1 7]

FIGURE 1.9

The split operation packs the elements with a 0 in the corresponding flag
position to the bottom of a vector, and packs the elements with a 1 to the
top of the same vector. The permute writes each element of A to the index
specified by the corresponding position in Index.

PRAM.2 If we assume that n keys are each O(lg n) bits long, then the overall
algorithm runs in time:

O((
n

p
+ lg p) lg n) = O(

n

p
lg n + lg n lg p).

1.4
Recurrence Equations

This section shows how various recurrence equations can be solved using
the scan operation. A recurrence is a set of equations of the form

xi = fi(xi−1, xi−2, · · · , xi−m), m ≤ i < n (1.3)

2On an CREW PRAM we can use the scan described in Chapter 4 to get a time of O(n/p+

lg p/ lg lg p).

7 87

prescan(+, not(Flags)) // prescan = exclusive prefix sum
rev(n - scan(+, rev(Flags)) // rev = reverse

Worksheet #37 (one possible solution):
Creating a Circuit for Parallel Prefix Sums

42 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Assume that you have a full adder cell, ⊕, that can be used as a building block
for circuits (no need to worry about carry’s). Create a circuit that generates the
prefix sums for 1, … 6, by adding at most 5 more cells to the sketch shown below,
while ensuring that the CPL is at most 3 cells long. Assume that you can duplicate
any value (fan-out) to whatever degree you like without any penalty.

1 2 3 4 5 6 (Inputs)

 ⊕ ⊕ ⊕
 ⊕ ⊕
 ⊕
 ⊕

1 3 6 10 15 21 (Outputs)

 GPU Design Idea #2: lock stepping w/
branching (Lecture 38)

43 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Non branching code;

if(flag > 0){ /* branch */
 x = exp(y);
 y = 2.3*x;
}  
else{
 x = sin(y);
 y = 2.1*x;
}

Non branching code;

ALU ALU ALU ALU ALU ALU ALU ALU

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T T F T T F F F
✓ ✓ X ✓ ✓ X X X
✓ ✓ X ✓ ✓ X X X

X X ✓ X X ✓ ✓ ✓

X X ✓ X X ✓ ✓ ✓

Time

The cheap branching approach means that some ALUs are idle as all ALUs
traverse all branches [executing NOPs if necessary]

In the worst possible case we could see 1/8 of maximum performance.

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Consider SIMD execution of the following pseudocode with 8 threads
in a block. Assume that each call to doWork(x) takes x units of time,
and ignore all other costs. How long will this program take when
executed on 8 GPU cores, taking into consideration the branching
issues discussed in Slide 9?

1. int tx = threadIdx.x; // ranges from 0 to 7
2. if (tx % 2 = 0) {
3. S1: doWork(1); // Computation S1 takes 1 unit of time
4. }
5. else {
6. S2: doWork(2); // Computation S2 takes 2 units of time
7. }

Worksheet #38 solution:
Branching in SIMD code

Solution: 3 units of time (WORK=24, CPL=3)

44 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Announcements
• Homework 5 due today (officially) with penalty-free extension until May 1st

—Any remaining slip days can be applied past May 1st

• Exam 2 is a scheduled final exam to be held during 9am - 12noon on
Tuesday, May 2nd, in KCK 100

— Final exam will cover material from Lectures 18 - 38

• Group office hours will be held next week in Duncan Hall at the following
times

• 2pm - 3pm, Monday, April 24th (DH 3092)
• 2pm - 3pm, Wednesday, April 26th (DH 3092)
• 2pm - 3pm, Friday, April 28th (DH 3076)

• COMP 322 grand finale at 3pm in DH 3092 TODAY (group office hours time
slot, but cake will be served!)

45 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

Acknowledgments
• Co-instructor

—Mack Joyner

• Graduate TAs
—Max Grossman (Head TA), Jonathan

Sharman, Ryan Spring, Bing Xue, Lechen Yu

• Undergraduate TAs
—Marc Canby, Anna Chi, Peter Elmers, Joseph

Hungate, Cary Jiang, Gloria Kim, Kevin
Mullin, Victoria Nazari, Ashok Sankaran,
Sujay Tadwalkar, Anant Tibrewal, Eugene
Wang, Yufeng Zhou

• Administrative Staff
—Annepha Hurlock, Bel Martinez

46 COMP 322, Spring 2017 (V. Sarkar, M. Joyner)

“Education is
what survives

when what has
been learned

has been
forgotten”

B.F. Skinner

Have
a great
summer!!

