COMP 322/ ELEC 323:
Fundamentals of

Parallel Programming

Lecture 1: Task Creation & Termination
(async, finish)

Instructors: Mack Joyner, Zoran Budimli¢
Department of Computer Science, Rice University
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 1 08 January 2018

Special thanks to Vivek Sarkar!

COMP 322 Lecture 1 08 January 2018 Z\S

Your Teaching Staff!

* Undergraduate TAs

— Abbey Baker, Ashok Sankaran, Austin Bae, Avery
Whitaker, Aydin Zanager, Eduard Danalache, Frank
Chen, Hamza Nauman, Harrison Brown, Jahid Adam,
Jeemin Sim, Kitty Cai, Madison Lewis, Ryan Han,
Teju Manchenella, Victor Gonzalez, Victoria Nazari

« Graduate TAs
— Jonathan Sharman, Srdjan Milakovic

* Instructors
— Mack Joyner, Zoran Budimli¢

3 COMP 322, Spring 2018 (M. Joyner, Z. Budimli¢) D

What is Parallel Computing?

 Parallel computing: using multiple processors in parallel to solve
problems more quickly than with a single processor and/or with less
energy

« Example of a parallel computer

—An 8-core Symmetric Multi-Processor (SMP) consisting of four dual-
core chip microprocessors (CMPs)

RAM

L3 Cache

|
< Front side bus
| | |

L

Memory bus controller Memory bus controller Memory bus controller Memory bus controller
CMP-0 CMP-1 CMP-2 CMP-3
L2 cache L2 cache L2 cache L2 cache
L1-1|L1-D| L1-1|L1-D || L1-I | L1-D| L1l [L1-D || L1-1 | L1-D| L1-1 |L1-D || L1-I | L1-D| L1l [L1-D
Processor | Processor || Processor | Processor || Processor | Processor || Processor | Processor Source: Figur‘e 1.5 of Lin & Snyder'
PO P1 P2 P3 P4 P P6 i book, Addison-Wesley, 2009

COMP 322, Spring 2018 (M. Joyner, Z. Budimlié) p/@*»q

All Computers are Parallel Computers ---

Ka AE R IABEG < W

Grrenisnd whain v depsed - tha grest
Tt

Thars are iy ren boks b deing which o4 ol peviend
Ao ot tha Lrving mperm whale babuse yov, wad o1 the Tame
St 18 e rursetast Logren warcand is tha wiemge Thane
Bodks wre Blk's ind beaserre bk i Sal tew
TN Eaghed Souh e Wbl €hp, a0d Do et
Ml rakabie . The rOgAl BVTRE IUCAL Bt g
Whale e be Sound b s rebenes 14 i rainey tal
D P —

COMP 322, Spring 2018 (M. Joyner, Z. Budimlié)

Why?

Computer Air Handling Unit (CRAC)

+Up To 30 Ton Sensible Capacity Per Unit

« Air Discharge Can Be Upflow Or Downflow Configuration

« Downflow Configuration Used With Raised Floor To Create
A Pressurized Supply Air Plenum With Floor Supply Diffusers

Individual Colocation Computer Cabinets
« Typ. Cabinet Footprint (28" W x 36"D x 84"H)
« Typical Capacities OF 1750 To 3750 Watts Per Cabinet

Power Distribution Unit (PDU) 3
« Typical Capacities Up To 225 KVA Per Unit
« Redundancy Through Dual PDU's With
Integral Static Trassfer Switch (STS)
[Emergency Diesel Generators
Total Generator Capacity = Total Electrical Load To Buikding
« Multiple Generators Can Be Electrically Combined With
Paralleling Gear
« Can Be Loeated Indoors Or Outdoors At Grade Or On Roof.
« Outdoor Applications Require Sound Attenuating Enclosures

i Fuel Oil Storage Tanks
« Tank Capacity Dependant On Length
Of Generator Operation

* Can Be Located Underground Or At
Colocation Suites Grade Or Indoors
« Modular Configuration For
Flexible Suite Sq.Ft. Arcas.
+ Suites Consist O Multiple Cabinets With
Secured Partitions (Cages, Walls, Etc.)

UPS System

« Uninterruptinle Power Supply Modules

+Up To 1000 kVA Per Module

« Cabinets And Battery Strings Or Rotary Flywheels

« Multiple Redundancy Configurations Can Be Designed
Electrical Primary Switchgear

« Includes Incoming Service And Distribution

+ Distribution To Mechanical Equipment

+ Distribation To Secondary Electrical Equipment Via UPS

Heat Rejection Devices Pump Room
« Drycoolers, Air Cooled Chillers, REF ;s ToPump CondenscChilled WaterBetween Dycoolers And CRAC Units

+ Up To 400 Ton Capacity Per Usit % « Additional Equipment Includes Expansion Tank, Gilycol Feed System

+ Mounted At Girade Or On Roof *N+1 Design (Standby Pump)
+N+1 Design

CN>=0ID

fsus

¥

Moore’s Law and Dennard Scaling

Gordon Moore (co-founder of Intel) predicted
in 1965 that the transistor density of
semiconductor chips would double roughly every
1-2 years (Moore's Law)

= area of transistor halves every 1-2 years

= feature size reduces by /2 every 1-2 years
Slide source: Jack Dongarra

1975 1980 1985 1990 1995
r]
10M Micro 500
(transistors) 2000 (mips)
™ . 25
Pentidm”
. — Proocessor
B0486
100K @. 80386 1.0
‘ BO286
10K 308 01
d BO80
"OG" 0.01

Dennard Scaling states
that power for a fixed
chip area remains
constant as transistors
grow smaller

COMP 322, Spring 2018 (M. Joyner, Z. Budimlié)

Recent Technology Trends

10,000,000

Chip density (transistors) is Source: Intel, Microsoft (Sutter)
increasing ~2x every 2 years + 000.000 1 and Stanford (Olukotun, Hammond) i
= number of processors | /.

doubles every 2 years as well 100.000

Clock speed is plateauing | | | | ;
below 10 GHz so that chip e T Wl

power stays below 100W

1,000

Instruction-level parallelism
(ILP) in hardware has also
plateaued below 10
instructions/cycle

100

10

=> Parallelism must be
managed by software! ,

= Transistors (000) | —
¢ Clock Speed (MHz)
& Power (W)

@ Perf/Clock (ILP)

0
7 COMP 3 1970 1975 1980 1985 1990 1995 2000 2005 2010

Parallelism Saves Power
(Simplified Analysis)

Nowadays (post Dennard Scaling), Power ~ (Capacitance) * (Voltage)’ * (Frequency)
and maximum Frequency is capped by Voltage

=>» Power is proportional to (Frequency)’

Baseline example: single 1GHz core with power P

Option A: Increase clock frequency to 2GHz =» Power = 8P

Option B: Use 2 cores at 1 GHz each = Power = 2P

« Option B delivers same performance as Option A with 4x less power ... provided
software can be decomposed to run in parallel!

8 COMP 322, Spring 2018 (M. Joyner, Z. Budimlic) $

What is Parallel Programming?

« Specification of operations that can
be executed in parallel Taslk A TCIISk B

« Aparallel program is decomposed
into sequential subcomputations
called tasks

 Parallel programming constructs
define task creation, termination, and
Interaction

/B]
R o i 1 i 5 47 e oy oo =|=l!r;.‘!

Schematic of a dual-core
Processor

9 COMP 322, Spring 2018 (M. Joyner, Z. Budimli¢) D

Example of a Sequential Program:
Computing the sum of arrav elements

Algorithm 1: Sequential ArraySum Computation Gr'aph

Input: Array of numbers, X.

Output: sum = sum of elements in array X.
sum « 0; 0 X[0]
for : < 0 to X.length — 1 do l

L sum < sum + X|i];
return sum; X[1]
Observations: X[2]
* The decision to sum up the elements from left /

to right was arbitrary

« The computation graph shows that all l

operations must be executed sequentially

10 COMP 322, Spring 2018 (M. Joyner, Z. Budimlié)

Parallelization Strategy for two cores
(Two-wayv Parallel Arrav Sum)

Task O: Compute sum of Task 1: Compute sum of
lower half of array upper half of array
O,

|

Compute total sum

Basic idea:

 Decompose problem into two tasks for partial sums
« Combine results to obtain final answer

 Parallel divide-and-conquer pattern

11 COMP 322, Spring 2018 (M. Joyner, Z. Budimlié)

Async and Finish Statements for Task
Creation and Termination (Pseudocode)

async S finish S

= Execute S, but wait until all
asyncs in S’s scope have
terminated.

Creates a new child task that
executes statement S

// T,(Parent task)
STMTO;
finish { //Begin finish
async {
STMT1; //T,(Child task)

}
STMT2 ; //Continue in T,

//Wait for T,

} //End finish
STMT3; //Continue in T,

12 COMP 322, Spring 2018 (M. Joyner, Z. Budimlié) %\d

Two-way Parallel Array Sum
using async & finish constructs

Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
// Start of Task T1 (main program)
suml < 0; sum?2 < 0;
// Compute suml (lower half) and sum2 (upper half) in parallel.
finish{
async{
// Task T2
for i < 0 to X.length/2 — 1 do
L suml < suml + X[i];

b

async{
// Task T3
for i + X.length/2 to X.length — 1 do
L sum?2 < sum?2 + X [i];

};

};

// Task T1 waits for Tasks T2 and T3 to complete
// Continuation of Task T1

sum <— suml + sum?2;

return sum;

13 COMP 322, Spring 2018 (M. Joyner, Z. Budimlié) p/@}

Course Syllabus

» Fundamentals of Parallel Programming taught in three modules

1. Parallelism

2. Concurrency

3. Locality & Distribution
« Each module is subdivided into units, and each unit into topics
 Lecture and lecture handouts will introduce concepts using pseudocode notations
 Labs and programming assignments will be in Java 8

—Initially, we will use the Habanero-Java (HJ) library developed at Rice as a pedagogic
parallel programming model

- HJ-lib is a Java 8 library (no special compiler support needed)

- HJ-lib contains many features that are easier to use than standard Java threads/
tasks, and are also being added to future parallel programming models

—Later, we will learn parallel programming using standard Java libraries, and
combinations of Java libs + HJ-lib

5
14 COMP 322, Spring 2018 (M. Joyner, Z. Budimlic) %‘

Grade Policies

Course Rubric
« Homeworks (5) 40% (written + programming components)
- Weightage proportional to # weeks for homework

« Exams (2) 40% (scheduled midterm + scheduled final)
« Labs 10% (labs need to be checked off by Monday)
 Quizzes 5% (on-line quizzes on Canvas)

« Class Participation 5% (in-class worksheets)

15 COMP 322, Spring 2018 (M. Joyner, Z. Budimlic) &),

Next Steps

« IMPORTANT:

—Bring your laptop to this week’s lab at 4pm on Thursday (SEW
301)

—Watch videos for topics 1.2 & 1.3 for next lecture on Wednesday

« HW1 will be assigned on Jan 10th and be due on Jan 24th.
(Homework is normally due on Wednesdays.)

o Each quiz (to be taken online on Canvas) will be due on the Friday
after the unit is covered in class. The first quiz for Unit 1 (topics 1.1
- 1.5) is due by Jan 26.

o See course web site for syllabus, work assignments, due dates, ...

- http://lcomp322.rice.edu

16 COMP 322, Spring 2018 (M. Joyner, Z. Budimlié)

OFFICE HOURS

« Regular office hour schedule can be found at
Office Hours link on course web site

 This week’s office hours are Tu/W 4pm - Spm,
Duncan Hall 2071

« Send email to instructors (mjoyner@rice.edu,
zoran@rice.edu) if you need to meet some other
time this week

« And remember to post questions on Piazzal!

17 COMP 322, Spring 2018 (M. Joyner, Z. Budimlic) &),

