COMP 322: Fundamentals of Parallel Programming

Lecture 4: Parallel Speedup and Amdahl’'s Law

Mack Joyner and Zoran Budimli¢
{mjoyner, zoran}@rice.edu

http:/comp322.rice.edu

COMP 322 Lecture 4
January 2018


http://comp322.rice.edu

One Possible Solution to Worksheet 3
(Multiprocessor Scheduling)

Start time Proc1 Proc 2
There are - -
4 idle 1 B
slots in z 5 Z
Thls 4 D N
schedule 5 D N
6 D (0)
— Ccan we . 1 .
do better 3 | R
than T2 = i L :
10 K R
15 ? o - :
o As before, WORK = 26 and CPL = 11 for this graph - - -
* T.=15, for the 2-processor schedule on the right > -
e We can also see that —
max(CPL,WORK/2) <= T2< CPL + WORK/2

2 COMP 322, Spring 2018 (M.Joyner, Z. Budimli¢)



Parallel Speedup

o Define Speedup(P)=T, /T,
—Factor by which the use of P processors speeds up execution time
relative to 1 processor, for a fixed input size
—For ideal executions without overhead, 1 <= Speedup(P) <= P

—This is what you will see with abstract metrics, but these
bounds may not hold when we start measuring real execution
times with real overheads

—Linear speedup
- When Speedup(P) = k*P, for some constant k, 0 <k <1

« |deal Parallelism = WORK/CPL = T,/T,,

= Parallel Speedup on an unbounded (infinite) number of processors

COMP 322, Spring 2018 (M.Joyner, Z. Budimlic) @



Computation Graph for Recursive Tree
approach to computing Array Sum in parallel

X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7]

N N N \.®/

/

Assume greedy schedule, input array size = S is a power of 2, each add takes 1 time unit
e WORK(G) = S-1, and CPL(G) = log2(S)

Define T(S,P) = parallel execution time for Array Sum with size S on P processors
e Use upper bound T(S,P) <= WORK(G)/P + CPL(G) as a worst-case estimate

e T(S,P) = WORK(G)/P + CPL(G) = (S-1)/P + log2(S)
e —> Speedup(S,P) =T(S,1)/T(S,P) = (S-1)/((S-1)/P + log2(S))

4 COMP 322, Spring 2018 (M.Joyner, Z. Budimli¢)




How many processors should we use?

 Define Efficiency(P) = Speedup(P)/ P = T4/(P * Tp)

— Processor efficiency --- figure of merit that indicates how well a parallel
program uses available processors

— For ideal executions without overhead, 1/P <= Efficiency(P) <=1
— Efficiency(P) =1 (100%) is the best we can hope for.

 Half-performance metric
— S12 = input size that achieves Efficiency(P) = 0.5 for a given P

— Figure of merit that indicates how large an input size is needed to obtain
efficient parallelism

— A larger value of Sq; indicates that the problem is harder to parallelize
efficiently
« How many processors to use?

— Common goal: choose number of processors, P for a given input size, S,
so that efficiency is at least 0.5 (50%)

5 COMP 322, Spring 2018 (M.Joyner, Z. Budimlic¢)



ArraySum: Speedup as function of array size, S,
and number of processors, P

Speedup(S,P)

» Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + log2(S))
« Asymptotically, Speedup(S,P) —(S-1)/logzS, as P — infinity

180
160
140
120
100
80
60
40
20

Speedup (5S=1024) Speedup (S=2048)
//
+—>
f A < >
~_
\

1

2 4 8 16 32 64 128 256 512 1024

Efficiency(P) < 0.5,

for P 2 258

_==> wasteful to use
more than 256
processors for S=2048

Efficiency(P) = 0.5,
\for P=128

==> wasteful to use
more than 128

Number of processors, P (log scale)

processors for $=1024

COMP 322, Spring 2018 (M.Joyner, Z.

Budimlic) @



Amdahl’s Law [1967]

If q <1 is the fraction of WORK in a parallel program that must be executed sequentially
for a given input size S, then the best speedup that can be obtained for that program is
Speedup(S,P) = 1/q.

Observation follows directly from critical path length lower bound on parallel execution
time

— CPL>=q*T(S,1)

— T(S,P)>=q ™ T(S,1)

— Speedup(S,P) = T(S,1)/T(S,P) <= 1/q
This upper bound on speedup simplistically assumes that work in program can be
divided into sequential and parallel portions

— Sequential portion of WORK = q

- also denoted as f (fraction of sequential work)

— Parallel portion of WORK = 1-q
- also denoted as fp (fraction of parallel work)

Computation graph is more general and takes dependences into account

COMP 322, Spring 2018 (M.Joyner, Z. Budimli¢)



lllustration of Amdahl’s Law:
Best Case Speedup as function of Parallel Portion

Amdahl's Law
20.00 —
P
18.00 - .
/ Parallel Portion
16.00 4 50%
/ — 75%
14.00 90%
/ — 095%
12.00 A
a /
-
@ 10.00 7 —
’ A1
8.00 /
6.00 //
/|
4.00 74 L
//
2.00 /%
BMCTICINE N T T T T T T O O A
- o~ "2} o o o — m r~ Ty}
- ™~ - @0 O ™~ 7y
— ™M (Fe)
Number of Processors (log scale)

Figure source: http://en.wikipedia.org/wiki/Amdahl's law

COMP 322, Spring 2018 (M.Joyner, Z. Budimli¢) @


http://en.wikipedia.org/wiki/Amdahl

Announcements & Reminders

IMPORTANT:

—Watch video & read handout for topic 2.1 for next lecture on Monday,
Jan 22nd

HW1 was posted on the course web site (http://comp322.rice.edu) on Jan
10th, and is due on Jan 24th

Quiz for Unit 1 (topics 1.1 - 1.5) is due by Jan 26th on Canvas
Midterm exam will be on Thursday, Feb 22nd. Time is TBD.

See course web site for all work assignments and due dates

- Use Piazza (public or private posts, as appropriate) for all
communications re. COMP 322

- See Office Hours link on course web site for latest office hours schedule.

COMP 322, Spring 2018 (M.Joyner, Z. Budimlic¢)


http://comp322.rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/322OfficeHours

