
COMP 322: Fundamentals of Parallel Programming

Lecture 7: Memoization and Map/Reduce

Mack Joyner and Zoran Budimlić
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 7
January 2018

http://comp322.rice.edu

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Worksheet #6 solution:
Associativity and Commutativity

Recap:
A binary function f is associative if f(f(x,y),z) = f(x,f(y,z)).
A binary function f is commutative if f(x,y) = f(y,x).

Worksheet problems:
1) Claim: a Finish Accumulator (FA) can only be used with operators that are
associative and commutative. Why? What can go wrong with accumulators if
the operator is non-associative or non-commutative?
You may get different answers in different executions if the operator is non-
associative or non-commutative e.g., an accumulator can be implemented using
one “partial accumulator” per processor core.

2) For each of the following functions, indicate if it is associative and/or
commutative.
a) f(x,y) = x+y, for integers x, y, is associative and commutative
b) g(x,y) = (x+y)/2, for integers x, y, is commutative but not associative
c) h(s1,s2) = concat(s1, s2) for strings s1, s2, e.g., h(“ab”,”cd”) = “abcd”, is
associative but not commutative

2

3 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Background: Functional Programming

• Eliminate side-effects
• emphasizes functions whose results that

depend only on their inputs and not on any other
program state

• calling a function, f(x), twice with the same value
for the argument x will produce the same result
both times

Helpful Link: http://en.wikipedia.org/wiki/Functional_programming

http://en.wikipedia.org/wiki/Functional_programming

4 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Example: Binomial Coefficient

• The coefficient of the x k term in the polynomial expansion of
the binomial power (1 + x) n

• Number of sets of k items that can be chosen from n items
• Indexed by n and k

• written as C(n, k)
• read as “n choose k”

• Factorial Formula: C(n, k) =

• Recursive Formula
 C(n, k) = C(n – 1, k – 1) + C(n – 1, k)

 Base cases: C(n, n) = C(n, 0) = C(0, k) = 1

n!
k!(n− k)!
"

#
$

%

&
'

Helpful Link: http://en.wikipedia.org/wiki/Binomial_coefficient

http://en.wikipedia.org/wiki/Binomial_coefficient

5 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Example: Binomial Coefficient
(Recursive Sequential version)

1. int choose(int N, int K) {

2. if (N == 0 || K == 0 || N == K) {

3. return 1;

4. }

5. int left = choose (N-1, K - 1);

6. int right = choose (N-1, K);

7. return left + right;

8. }

6 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Example: Binomial Coefficient
(Parallel Recursive Pseudocode)

1. Integer choose(int N, int K) {

2. if (N == 0 || K == 0 || N == K) {

3. return 1;

4. }

5. future<Integer> left =

6. future { return choose (N-1, K-1); }

7. future<Integer> right =

8. future { return choose (N-1, K); }

9. return left.get() + right.get();

10. }

• Use of futures supports incremental parallelization with low
developer effort

7 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

What inefficiencies do you see in the
recursive Binomial Coefficient algorithm?

C(4, 2)

C(3, 1) C(3, 2)

C(2, 0) C(2, 1)

1 C(1, 0) C(1, 1)

1 1

C(2, 1) C(2, 2)

1

= 2 = 2

= 3 = 3

= 6

C(1, 0) C(1, 1)

1 1

8 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Memoization

• Memoization - saving and reusing previously computed
values of a function rather than recomputing them
• A optimization technique with space-time tradeoff

• A function can only be memoized if it is referentially
transparent, i.e. functional

• Related to caching
• memoized function "remembers" the results

corresponding to some set of specific inputs
• memoized function populates its cache of results

transparently on the fly, as needed, rather than in
advance

Helpful Link: http://en.wikipedia.org/wiki/Memoization

http://en.wikipedia.org/wiki/Memoization

9 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Example: Binomial Coefficient
(sequential memoized version)

1. final Map<Pair<Int, Int>, Int> cache = new ...;

2. int choose(int N, int K) {

3. Pair<Int, Int> key = Pair.factory(N, K);

4. if (cache.contains(key)) {

5. return cache.get(key);

6. }

7. if (N == 0 || K == 0 || N == K) {

8. return 1;

9. }

10. int left = choose (N - 1, K - 1);

11. int right = choose (N - 1, K);

12. int result = left + right;

13. cache.put(key, result);

14. return result;

15. }

10 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Example: Binomial Coefficient
(parallel memoized version w/ futures)

1. final Map<Pair<Int, Int>, future<Integer>> cache = new ...;
2. Integer choose(final int N, final int K) {

3. final Pair<Int, Int> key = Pair.factory(N, K);
4. if (cache.contains(key)) {

5. return cache.get(key).get();
6. }

7. future<Integer> f = future {
8. if (N == 0 || K == 0 || N == K) return 1;

9. future<Integer> left = future { return choose (N-1, K-1); }
10. future<Integer> right = future { return choose (N-1, K); }

12. return left.get() + right.get();
13. }

14. cache.put(key, f);
15. return f.get();

16. }

• Assumes availability of a “thread-safe” cache library, e.g., ConcurrentHashMap

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Map/Reduce: Streaming data requirements
have skyrocketed

• AT&T processes roughly 30 petabytes per day through its
telecommunications network

• Google processed roughly 24 petabytes per day in 2009

• Facebook, Amazon, Twitter, etc, have comparable throughputs

• Two Sigma maintains over 100 teraflops of private computing
power, continuously computing over 11 petabytes of quantitative
data

• In comparison, the IBM Watson knowledge base stored roughly 4
terabytes of data when winning at Jeopardy

11

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Parallelism enables processing of big data

• Continuously streaming data needs to be processed at least as fast
as it is accumulated, or we will never catch up

• The bottleneck in processing very large data sets is dominated by
the speed of disk access

• More processors accessing more disks enables faster processing

12

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

MapReduce Pattern

• Apply Map function f to user supplied record of key-
value pairs

• Compute set of intermediate key/value pairs
• Apply Reduce operation g to all values that share

same key to combine derived data properly
—Often produces smaller set of values

• User supplies Map and Reduce operations in
functional model so that the system can parallelize
them, and also re-execute them for fault tolerance

13

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

MapReduce: The Map Step

vk

k' v'

k' v'
map

vk

vk

…
k' v'

map

Input set of
key-value pairs

Flattened intermediate
set of key-value pairs

…

k' v'map

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

14

http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

MapReduce: The Reduce Step

k' v'

…

k' v'

k' v'

k' v'

Intermediate
key-value pairs

group

reduce

reduce
k' v''

v''

v''

…

k' v'

…

k' v'

k' v' v'

v' v'

Key-value groups
Output
key-value pairs

k'

k'

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

15

http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Map Reduce: Summary

• Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki, vi)
consists of a key, ki, and a value, vi.
• Assume that the key and value objects are immutable, and

that equality comparison is well defined on all key objects.
• Map function f generates sets of intermediate key-value pairs,

f(ki,vi) = {(k1′ ,v1′),...(km′,vm′)}. The km′ keys can be different
from ki key in the map function.
• Assume that a flatten operation is performed as a post-

pass after the map operations, so as to avoid dealing with a
set of sets.

• Reduce operation groups together intermediate key-value
pairs, {(k′, vj′)} with the same k’, and generates a reduced key-
value pair, (k′,v′′), for each such k’, using reduce function g

16

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Google Uses MapReduce For …
• Web crawl: Find outgoing links from HTML documents,

aggregate by target document

• Google Earth: Stitching overlapping satellite images to
remove seams and to select high-quality imagery

• Google Maps: Processing all road segments on Earth and
render map tile images that display segments

17

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

MapReduce Execution

Fine granularity
tasks: many more
map tasks than
machines

2000 servers =>  
≈ 200,000 Map Tasks, ≈
5,000 Reduce tasks

Bucket sort
to get same keys
together

18

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

WordCount example
In: set of words
Out: set of (word,count) pairs
Algorithm:
1. For each in word W, emit (W, 1) as a key-value pair (map step).
2. Group together all key-value pairs with the same key (reduce step).
3. Perform a sum reduction on all values with the same key(reduce step).

• All map operations in step 1 can execute in parallel with only local data
accesses

• Step 2 may involve a major reshuffle of data as all key-value pairs with
the same key are grouped together.

• Step 3 performs a standard reduction algorithm for all values with the
same key, and in parallel for different keys.

19

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

PseudoCode for WordCount
1. <String, Integer> map(String inKey, String inValue):
2. // inKey: document name
3. // inValue: document contents
4. for each word w in inValue:
5. emitIntermediate(w, 1) // Produce count of words
6.

7. <Integer> reduce(String outKey, Iterator<Integer> values):
8. // outKey: a word
9. // values: a list of counts
10. Integer result = 0
11. for each v in values:
12. result += v // the value from map was an integer
13. emit(result)

20

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Example Execution of WordCount Program

that that is is that that is not is not is that it it is

is 1, that 2 is 1, that 2 is 2, not 2 is 2, it 2, that 1
Map 1 Map 2 Map 3 Map 4

Reduce 1 Reduce 2
is 6; it 2 not 2; that 5

Shuffle

Collect

is 6; it 2; not 2; that 5

Distribute

that 2,2,1
not 2

is 1,1,2,2
it 2

21

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Announcements & Reminders
• IMPORTANT:

—Watch video & read handout for topic 2.5 and 2.6 for next
lecture on Monday, Jan 29th

• HW2 is available and due by Wednesday, Feb 7th

• Quiz for Unit 1 (topics 1.1 - 1.5) is due by 11:59pm TODAY on
Canvas

• See course web site for all work assignments and due dates
• Use Piazza (public or private posts, as appropriate) for all

communications re. COMP 322
• See Office Hours link on course web site for latest office hours

schedule.

22

https://wiki.rice.edu/confluence/display/PARPROG/322OfficeHours

