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Worksheet #6 solution:  
Associativity and Commutativity

Recap: 
A binary function f is associative if f(f(x,y),z) = f(x,f(y,z)). 
A binary function f is commutative if f(x,y) = f(y,x). 

Worksheet problems: 
1) Claim: a Finish Accumulator (FA) can only be used with operators that are 
associative and commutative.  Why?  What can go wrong with accumulators if 
the operator is non-associative or non-commutative? 
You may get different answers in different executions if the operator is non-
associative or non-commutative e.g., an accumulator can be implemented using 
one “partial accumulator” per processor core. 

2) For each of the following functions, indicate if it is associative and/or 
commutative. 
a) f(x,y) = x+y, for integers x, y, is associative and commutative 
b) g(x,y) = (x+y)/2, for integers x, y, is commutative but not associative 
c) h(s1,s2) = concat(s1, s2) for strings s1, s2, e.g., h(“ab”,”cd”) = “abcd”, is 
associative but not commutative 
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Background: Functional Programming

• Eliminate side-effects 
• emphasizes functions whose results that 

depend only on their inputs and not on any other 
program state 

• calling a function, f(x), twice with the same value 
for the argument x will produce the same result 
both times

Helpful Link: http://en.wikipedia.org/wiki/Functional_programming

http://en.wikipedia.org/wiki/Functional_programming
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Example: Binomial Coefficient

• The coefficient of the x k term in the polynomial expansion of 
the binomial power (1 + x) n 

• Number of sets of k items that can be chosen from n items 
• Indexed by n and k  

• written as C(n, k) 
• read as “n choose k” 

• Factorial Formula: C(n, k) =                    
         

• Recursive Formula 
     C(n, k) = C(n – 1, k – 1) + C(n – 1, k)   

 Base cases: C(n, n) = C(n, 0) = C(0, k) = 1
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Helpful Link: http://en.wikipedia.org/wiki/Binomial_coefficient

http://en.wikipedia.org/wiki/Binomial_coefficient
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Example: Binomial Coefficient 
(Recursive Sequential version)

1. int choose(int N, int K) {

2.     if (N == 0 || K == 0 || N == K) {

3.         return 1;

4.     }

5.     int left  = choose (N-1, K - 1);

6.     int right = choose (N-1, K);

7.     return left + right;

8. }
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Example: Binomial Coefficient 
(Parallel Recursive Pseudocode)

1. Integer choose(int N, int K) {

2.     if (N == 0 || K == 0 || N == K) {

3.         return 1;

4.     }

5.     future<Integer> left  = 

6.               future { return choose (N-1, K-1); }

7.     future<Integer> right = 

8.                future { return choose (N-1, K); }

9.     return left.get() + right.get();

10. }

• Use of futures supports incremental parallelization with low 
developer effort
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What inefficiencies do you see in the 
recursive Binomial Coefficient algorithm?

C(4, 2)

C(3, 1) C(3, 2)

C(2, 0) C(2, 1)

1 C(1, 0) C(1, 1)

1 1

C(2, 1) C(2, 2)

1

= 2 = 2

= 3 = 3

= 6

C(1, 0) C(1, 1)

1 1



8 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Memoization

• Memoization - saving and reusing previously computed 
values of a function rather than recomputing them 
• A optimization technique with space-time tradeoff 

• A function can only be memoized if it is referentially 
transparent, i.e. functional 

• Related to caching 
• memoized function "remembers" the results 

corresponding to some set of specific inputs 
• memoized function populates its cache of results 

transparently on the fly, as needed, rather than in 
advance

Helpful Link: http://en.wikipedia.org/wiki/Memoization

http://en.wikipedia.org/wiki/Memoization
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Example: Binomial Coefficient
(sequential memoized version)

1. final Map<Pair<Int, Int>, Int> cache = new ...;

2. int choose(int N, int K) {

3.     Pair<Int, Int> key = Pair.factory(N, K);

4.     if (cache.contains(key)) {

5.         return cache.get(key);

6.     }

7.     if (N == 0 || K == 0 || N == K) {

8.         return 1;

9.     }

10.     int left  = choose (N - 1, K - 1);

11.     int right = choose (N - 1, K);

12.     int result = left + right;

13.     cache.put(key, result);

14.     return result;

15. }
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Example: Binomial Coefficient
(parallel memoized version w/ futures)

1. final Map<Pair<Int, Int>, future<Integer>> cache = new ...;
2. Integer choose(final int N, final int K) {

3.     final Pair<Int, Int> key = Pair.factory(N, K);
4.     if (cache.contains(key)) {

5.         return cache.get(key).get();
6.     }

7.     future<Integer> f = future {
8.       if (N == 0 || K == 0 || N == K) return 1;

9.       future<Integer> left = future { return choose (N-1, K-1); }
10.       future<Integer> right = future { return choose (N-1, K); }

12.       return left.get() + right.get();
13.     }

14.     cache.put(key, f);
15.     return f.get();

16. }

• Assumes availability of a “thread-safe” cache library, e.g., ConcurrentHashMap
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Map/Reduce: Streaming data requirements 
have skyrocketed

• AT&T processes roughly 30 petabytes per day through its 
telecommunications network  

• Google processed roughly 24 petabytes per day in 2009 

• Facebook, Amazon, Twitter, etc, have comparable throughputs 

• Two Sigma maintains over 100 teraflops of private computing 
power, continuously computing over 11 petabytes of quantitative 
data 

• In comparison, the IBM Watson knowledge base stored roughly 4 
terabytes of data when winning at Jeopardy
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Parallelism enables processing of big data

• Continuously streaming data needs to be processed at least as fast 
as it is accumulated, or we will never catch up 

• The bottleneck in processing very large data sets is dominated by 
the speed of disk access 

• More processors accessing more disks enables faster processing
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MapReduce Pattern

• Apply Map function f to user supplied record of key-
value pairs 

• Compute set of intermediate key/value pairs 
• Apply Reduce operation g to all values that share 

same key to combine derived data properly 
—Often produces smaller set of values 

• User supplies Map and Reduce operations in 
functional model so that the system can parallelize 
them, and also re-execute them for fault tolerance
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MapReduce: The Map Step
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MapReduce: The Reduce Step
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Map Reduce: Summary

• Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki, vi) 
consists of a key, ki, and a value, vi.  
• Assume that the key and value objects are immutable, and 

that equality comparison is well defined on all key objects. 
• Map function f generates sets of intermediate key-value pairs,  

f(ki,vi) = {(k1′ ,v1′),...(km′,vm′)}.  The km′ keys can be different 
from ki key in the map function. 
• Assume that a flatten operation is performed as a post-

pass after the map operations, so as to avoid dealing with a 
set of sets. 

• Reduce operation groups together intermediate key-value 
pairs, {(k′, vj′)} with the same k’, and generates a reduced key-
value pair, (k′,v′′), for each such k’, using reduce function g
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Google Uses MapReduce For …
• Web crawl: Find outgoing links from HTML documents, 

aggregate by target document 

• Google Earth: Stitching overlapping satellite images to 
remove seams and to select high-quality imagery 

• Google Maps: Processing all road segments on Earth and 
render map tile images that display segments
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MapReduce Execution

Fine granularity 
tasks: many more 
map tasks than 
machines

2000 servers =>  
≈ 200,000 Map Tasks, ≈ 
5,000 Reduce tasks

Bucket sort 
to get same keys 
together
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WordCount example
In: set of words 
Out: set of (word,count) pairs 
Algorithm: 
1. For each in word W, emit (W, 1) as a key-value pair (map step). 
2. Group together all key-value pairs with the same key (reduce step). 
3. Perform a sum reduction on all values with the same key(reduce step). 

• All map operations in step 1 can execute in parallel with only local data 
accesses 

• Step 2 may involve a major reshuffle of data as all key-value pairs with 
the same key are grouped together. 

• Step 3 performs a standard reduction algorithm for all values with the 
same key, and in parallel for different keys.
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PseudoCode for WordCount
1.  <String, Integer> map(String inKey, String inValue): 
2.    // inKey: document name 
3.    // inValue: document contents 
4.    for each word w in inValue: 
5.      emitIntermediate(w, 1) // Produce count of words 
6. 

7.  <Integer> reduce(String outKey, Iterator<Integer> values): 
8.    // outKey: a word 
9.    // values: a list of counts 
10.    Integer result = 0 
11.    for each v in values: 
12.      result += v // the value from map was an integer 
13.    emit(result)
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Example Execution of WordCount Program

that that is is that that is not is not is that it it is

is 1, that 2 is 1, that 2 is 2, not 2 is 2, it 2, that 1
Map 1 Map 2 Map 3 Map 4

Reduce 1 Reduce 2
is 6; it 2 not 2; that 5

Shuffle

Collect

is 6; it 2; not 2; that 5 

Distribute

that 2,2,1 
not 2

is 1,1,2,2 
it 2 
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Announcements & Reminders
• IMPORTANT:  

—Watch video & read handout for topic 2.5 and 2.6 for next 
lecture on Monday, Jan 29th 

• HW2 is available and due by Wednesday, Feb 7th 

• Quiz for Unit 1 (topics 1.1 - 1.5) is due by 11:59pm TODAY on 
Canvas 

• See course web site for all work assignments and due dates 
• Use Piazza (public or private posts, as appropriate) for all 

communications re. COMP 322 
• See Office Hours link on course web site for latest office hours 

schedule. 
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