
COMP 322: Fundamentals of Parallel Programming

Lecture 16: Point-to-Point Synchronization with Phasers

Zoran Budimlić and Mack Joyner
{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 16 16 February 2018

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

 For the example below, will reordering the five async statements change the meaning of the program (assuming that the semantics of
the reader/writer methods depends only on their parameters)? If so, show two orderings that exhibit different behaviors. If not,
explain why not.

No, reordering the asyncs doesn’t change the meaning of the program. Regardless of the order, Task 3 will always wait on Task 1. Task 5
will always wait on Task 2. Task 4 will always wait on both Task 1 and 2.

1. DataDrivenFuture left = new DataDrivenFuture();

2. DataDrivenFuture right = new DataDrivenFuture();

3. finish {

4. async await(left) leftReader(left); // Task3

5. async await(right) rightReader(right); // Task5

6. async await(left,right)

7. bothReader(left,right); // Task4

8. async left.put(leftWriter()); // Task1

9. async right.put(rightWriter());// Task2

10. }

Name: ________________________________ Netid: ___________________

Worksheet 15: Data Driven Futures

2

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Point-to-point synchronization

Question: when can the point-to-point computation graph result in a smaller CPL than the barrier
computation graph?
Answer: when there is variability in the node execution times.

iter = i

iter = i+1

Barrier synchronization

Barrier vs Point-to-Point Synchronization in  
One-Dimensional Iterative Averaging Example

iter = i

iter = i+1

3

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Phasers: a unified construct for barrier and point-to-point
synchronization

• HJ phasers unify barriers with point-to-point synchronization

—Inspiration for java.util.concurrent.Phaser

• Previous example motivated the need for “point-to-point” synchronization

— With barriers, phase i of a task waits for all tasks associated with the same barrier to
complete phase i-1

— With phasers, phase i of a task can select a subset of tasks to wait for

• Phaser properties
—Support for barrier and point-to-point synchronization
—Support for dynamic parallelism --- the ability for tasks to drop phaser registrations on

termination (end), and for new tasks to add phaser registrations (async phased)
—A task may be registered on multiple phasers in different modes

4

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Simple Example with Four Async Tasks and One Phaser
1. finish (() -> {

2. ph = newPhaser(SIG_WAIT); // mode is SIG_WAIT

3. asyncPhased(ph.inMode(SIG), () -> {

4. // A1 (SIG mode)

5. doA1Phase1(); next(); doA1Phase2(); });

6. asyncPhased(ph.inMode(SIG_WAIT), () -> {

7. // A2 (SIG_WAIT mode)

8. doA2Phase1(); next(); doA2Phase2(); });

9. asyncPhased(ph.inMode(HjPhaserMode.SIG_WAIT), () -> {

10. // A3 (SIG_WAIT mode)

11. doA3Phase1(); next(); doA3Phase2(); });

12. asyncPhased(ph.inMode(HjPhaserMode.WAIT), () -> {

13. // A4 (WAIT mode)

14. doA4Phase1(); next(); doA4Phase2(); });

15. });

5

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Computation Graph Schema Simple Example with Four Async Tasks
and One Phaser

6

Semantics of next depends on registration mode
SIG_WAIT: next = signal + wait
SIG: next = signal
WAIT: next = wait

signal

wait
next

SIG SIG_WAIT SIG_WAIT WAIT

 A master thread (worker) gathers all signals and broadcasts a barrier completion

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Summary of Phaser Construct
• Phaser allocation

— HjPhaser ph = newPhaser(mode);
– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— HjPhaserMode.SIG, HjPhaserMode.WAIT,  

HjPhaserMode.SIG_WAIT, HjPhaserMode.SIG_WAIT_SINGLE
– NOTE: phaser WAIT is unrelated to Java wait/notify (which we will study later)

• Phaser registration
— asyncPhased (ph1.inMode(<mode1>), ph2.inMode(<mode2>), … () -> <stmt>)

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …
– Child task’s capabilities must be subset of parent’s
– asyncPhased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
— next();

– Advance each phaser that current task is registered on to its next phase
– Semantics depends on registration mode
– Barrier is a special case of phaser, which is why next is used for both

7

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Capability Hierarchy

• A task can be registered in one of four modes with respect to a phaser:
SIG_WAIT_SINGLE, SIG_WAIT, SIG, or WAIT. The mode defines the set of capabilities —
signal, wait, single — that the task has with respect to the phaser. The subset relationship
defines a natural hierarchy of the registration modes. A task can drop (but not add)
capabilities after initialization.

SIG_WAIT_SINGLE = { signal, wait, single }

SIG_WAIT = { signal, wait }

SIG = { signal } WAIT = { wait }

8

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Left-Right Neighbor Synchronization (with m=3 tasks)
1. finish(() -> { // Task-0
2. final HjPhaser ph1 = newPhaser(SIG_WAIT);
3. final HjPhaser ph2 = newPhaser(SIG_WAIT);
4. final HjPhaser ph3 = newPhaser(SIG_WAIT);
5. asyncPhased(ph1.inMode(SIG),ph2.inMode(WAIT),
6. () -> { doPhase1(1);
7. next(); // signals ph1, waits on ph2
8. doPhase2(1);
9. }); // Task T1
10. asyncPhased(ph2.inMode(SIG),ph1.inMode(WAIT),ph3.inMode(WAIT),
11. () -> { doPhase1(2);
12. next(); // signals ph2, waits on ph3
13. doPhase2(2);
14. }); // Task T2
15. asyncPhased(ph3.inMode(SIG),ph2.inMode(WAIT),
16. () -> { doPhase1(3);
17. next(); // signals ph3, waits on ph2
18. doPhase2(3);
19. }); // Task T3
20.}); // finish

9

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Computation Graph for m=3 example
(without async-finish nodes and edges)

10

6

11

16

7-signal 7-wait

12-signal

17-signal

12-wait

17-wait

ph1.next
-start(0->1)

ph1.next
-end(0->1)

ph2.next
-start(0->1)

ph2.next
-end(0->1)

ph3.next
-start(0->1)

ph3.next
-end(0->1)

8

13

18

continue signal wait

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

forallPhased barrier is just an implicit phaser!
1. forallPhased(iLo, iHi, (i) -> {

2. S1; next(); S2; next();{...}
3. });

is equivalent to

1. finish(() -> {
2. // Implicit phaser for forall barrier

3. final HjPhaser ph = newPhaser(SIG_WAIT);
4. forseq(iLo, iHi, (i) -> {

5. asyncPhased(ph.inMode(SIG_WAIT), () -> {
6. S1; next(); S2; next();{...}

7. }); // next statements in async refer to ph
8. });

11

COMP 322, Spring 2018 (M.Joyner, Z.Budimlić)

Midterm exam (Exam 1)

• Midterm exam (Exam 1) will be held during COMP 322 lab time at 4pm on Thursday,
February 22, 2018

— Closed-notes, closed-book, closed computer, written exam scheduled for 2.5 hours
during 4pm — 6:30pm (but you can leave early if you’re done early!)

— Scope of exam is limited to Lectures 1 - 16 (all topics in Module 1 handout)
— Since this is a written exam and not a programming assignment, syntactic errors in

program text will not be penalized (e.g., missing semicolons, incorrect spelling of
keywords, etc) so long as the meaning of your solution is unambiguous.

— If you believe there is any ambiguity or inconsistency in a question, you should state the
ambiguity or inconsistency that you see, as well as any assumptions that you make to
resolve it.

— We will have a recap of Lectures 1-16 on Monday, February 19th, and an interactive Q&A
session on Wednesday, February 21st.

12

