
COMP 322: Fundamentals of Parallel Programming

Lecture 17: Midterm Review

Mack Joyner and Zoran Budimlić
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 17
February 2018

http://comp322.rice.edu

Worksheet #16:
Reordered Asyncs with One Phaser

1.finish (() -> {

2. ph = newPhaser(SIG_WAIT); // mode is SIG_WAIT

3. asyncPhased(ph.inMode(SIG), () -> {

4. // A1 (SIG mode)

5. doA1Phase1(); next(); doA1Phase2(); });

6. asyncPhased(ph.inMode(HjPhaserMode.WAIT), () -> {

7. // A4 (WAIT mode)

8. doA4Phase1(); next(); doA4Phase2(); });

9. asyncPhased(ph.inMode(SIG_WAIT), () -> {

10. // A2 (SIG_WAIT mode)

11. doA2Phase1(); next(); doA2Phase2(); });

12. asyncPhased(ph.inMode(HjPhaserMode.SIG_WAIT), () -> {

13. // A3 (SIG_WAIT mode)

14. doA3Phase1(); next(); doA3Phase2(); });

15. });

2 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Task A4 has been moved up to line 6. Does this change the computation graph in slide 7? If so,
draw the new computation graph. If not, explain why the computation graph is the same.

No, A4 still needs to wait on A2 and A3 to signal before it can start doA4Phase2().

Name: ___________________ Netid: ___________________

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)3

Async and Finish Statements for Task
Creation and Termination (Lecture 1)

async S

• Creates a new child task that
executes statement S

finish S
! Execute S, but wait until all

asyncs in S’s scope have
terminated.

// T0(Parent task)
STMT0;
finish { //Begin finish
 async {
 STMT1; //T1(Child task)
 }
 STMT2; //Continue in T0
 //Wait for T1
} //End finish
STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

1.finish {

2. for (int i = 0 ; i < N ; i++)

3. for (int j = 0 ; j < N ; j++)

4. async {

5. for (int k = 0 ; k < N ; k++)

6. C[i][j] = C[i][j] + A[i][k] * B[k][j];

7. } // async

8.} // finish

 This program generates N2 parallel async tasks, one to
compute each C[i][j] element of the output array. Additional
parallelism can be exploited within the inner k loop, but that
would require more changes than inserting async & finish.

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

One Possible Solution to Problem #2 in Worksheet 1
(Parallel Matrix Multiplication)

4

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Computation Graphs (Lecture 2)
• A Computation Graph (CG) captures the dynamic execution of a

parallel program, for a specific input

• CG nodes are “steps” in the program’s execution
— A step is a sequential subcomputation without any async, begin-

finish and end-finish operations

• CG edges represent ordering constraints
— “Continue” edges define sequencing of steps within a task
— “Spawn” edges connect parent tasks to child async tasks
— “Join” edges connect the end of each async task to its IEF’s

end-finish operations

• All computation graphs must be acyclic
—It is not possible for a node to depend on itself

• Computation graphs are examples of “directed acyclic
graphs” (dags)

5

1. finish { // F1

2. async A;

3. finish { // F2

4. async B1;

5. async B2;

6. } // F2

7. B3;

8. } // F1

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Which statements can potentially be
executed in parallel with each other?

6

F1-endF1-start F2-start F2-end

A

B1

B2

B3

Computation Graph

spawn join

continue

Key idea: If two statements, X and Y,
have no path of directed edges from
one to the other, then they can run in
parallel with each other.

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Complexity Measures for Computation
Graphs

Define

• TIME(N) = execution time of node N

• WORK(G) = sum of TIME(N), for all nodes N in CG G
—WORK(G) is the total work to be performed in G

• CPL(G) = length of a longest path in CG G, when
adding up execution times of all nodes in the path
—Such paths are called critical paths
—CPL(G) is the length of these paths (critical path

length, also referred to as the span of the graph)
—CPL(G) is also the smallest possible execution time

for the computation graph

7

Which Computation Graph has more
ideal parallelism?

Assume that all nodes have TIME = 1, so WORK = 10 for both graphs.

8 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Computation Graph 1 Computation Graph 2

CPL = 7 CPL = 6

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Data Races
 A data race occurs on location L in a program execution with

computation graph CG if there exist steps (nodes) S1 and S2 in CG
such that:
1. S1 does not depend on S2 and S2 does not depend on S1, i.e., S1

and S2 can potentially execute in parallel, and
2. Both S1 and S2 read or write L, and at least one of the accesses is

a write.

• A data-race is usually considered an error. The result of a read
operation in a data race is undefined. The result of a write operation
is undefined if there are two or more writes to the same location.

• Note that our definition of data race includes the case that both S1
and S2 write the same value in location L, even if that may not be
considered an error.

• Above definition includes all “potential” data races i.e., we consider
it to be a data race even if S1 and S2 end up executing on the same
processor.

9

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

One Possible Solution to Worksheet 2
(Reverse Engineering a Computation Graph)

10

1.A();

2.finish { // F1

3. async D();

4. B();

5. async {

6. E();

7. finish { // F2

8. async H();

9. F();

10. } // F2

11. G();

12. }

13. } // F1

14. C();

Observations:
• Any node with out-degree > 1 must be an

async (must have an outgoing spawn edge)
• Any node with in-degree > 1 must be an end-

finish (must have an incoming join edge
• Adding or removing transitive edges does not

impact ordering constraints

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Bounding the performance of Greedy
Schedulers (Lecture 3)

Combine lower and upper bounds to get
max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution time TP
that is within a factor of 2 of the optimal time (since max(a,b)
and (a+b) are within a factor of 2 of each other, for any a ≥ 0,b
≥ 0).
Corollary 2: Lower and upper bounds approach the same
value whenever

• There’s lots of parallelism, WORK(G)/CPL(G) >> P

• Or there’s little parallelism, WORK(G)/CPL(G) << P

11

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Abstract Performance Metrics
• Basic Idea

• Count operations of interest, as in big-O analysis, to evaluate parallel algorithms
• Abstraction ignores many overheads that occur on real systems

• Calls to doWork()
• Programmer inserts calls of the form, doWork(N), within a step to indicate

abstraction execution of N application-specific abstract operation
• e.g., in the Homework 1 programming assignment (Parallel Sort), we will

include one call to doWork(1) in each call to compareTo(), and ignore the
cost of everything else

• Abstract metrics are enabled by calling HjSystemProperty.abstractMetrics.set(true)
at start of program execution

• If an HJ program is executed with this option, abstract metrics can be printed at end
of program execution with calls to abstractMetrics().totalWork(),
abstractMetrics().criticalPathLength(), and abstractMetrics().idealParallelism()

12

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

One Possible Solution to Worksheet 3
(Multiprocessor Scheduling)

13

• As before, WORK = 26 and CPL = 11 for this graph
• T2 = 15, for the 2-processor schedule on the right
• We can also see that

 max(CPL,WORK/2) <= T2 < CPL + WORK/2

1

1

1

4 41

1 1 1
31

1

1

1

1

1

1

1

A

B

C

D

E

F
G

H

I

J

K

L

M

N

O

P

Q

R

Start%time! Proc%1! Proc%2!

0! A% !

1! B% !

2! C% N%

3! D% N%

4! D% N%

5! D% N%

6! D% O%

7! I% Q%

8! J% R%

9! L% R%

10! K% R%

11! M% E%

12% F% P%

13% G% !

14% H% !

15% ! !

There are
4 idle
slots in
this
schedule
— can we
do better
than T2 =
15 ?

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Solution to Worksheet 4

• Estimate T(S,P) ~ WORK(G,S)/P + CPL(G,S) = (S-1)/P + log2(S) for
the parallel array sum computation shown in slide 4.

• Assume S = 1024 ==> log2(S) = 10

• Compute for 10, 100, 1000 processors
—T(P) = 1023/P + 10
—Speedup(10) = T(1)/T(10) = 1033/112.3 ~ 9.2
—Speedup(100) = T(1)/T(100) = 1033/20.2 ~ 51.1
—Speedup(1000) = T(1)/T(1000) = 1033/11.0 ~ 93.7

• Why does the speedup not increase linearly in proportion to the
number of processors?
—Because of the critical path length, log2(S), is a bottleneck

14

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Worksheet 4 - Speedup Chart
(linear scale)

15

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Functional Parallelism: Adding Return
Values to Async Tasks (Lecture 5)

Example Scenario (PseudoCode)
 // Parent task creates child async task

 future<Integer> container = future { return computeSum(X,low,mid); };

 . . .

 // Later, parent examines the return value

 Integer sum = container.get();

Two issues to be addressed:

1) Distinction between container and value in container (box)
2) Synchronization to avoid race condition in container accesses

16

Parent Task Child Task
container = future {...}
. . .
container.get()

computeSum(...)
return ...

return valuecontainer

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Worksheet #5 solution: Computation Graphs for  
Async-Finish and Future Constructs

1) Can you write pseudocode with async-
finish constructs that generates a Computation
Graph with the same ordering constraints as the
graph on the right? If so, provide a sketch of
the program.

No. Finish cannot be used to ensure that D waits
for both B and C, while E waits only for C.

2) Can you write pseudocode with future
async-get constructs that generates a
Computation Graph with the same ordering
constraints as the graph on the right? If so,
provide a sketch of the program.

Yes, see program sketch with void futures. A
dummy return value can also be used.

17

Worksheet #5 solution (contd)

18 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

1. HjFuture<String> A = future(() -> {

2. return "A"; });

3. HjFuture<String> B = future(() -> {

4. A.get(); return "B"; });

5. HjFuture<String> C = future(() -> {

6. A.get(); return "C"; });

7. HjFuture<String> D = future(() -> {
8. // Order of B.get() & C.get() doesn’t matter

9. B.get(); C.get(); return "D"; });

10. HjFuture<String> E = future(() -> {

11. C.get(); return "E"; });

12. HjFuture<String> F = future(() -> {

13. D.get(); E.get(); return "F"; });

14. F.get();

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Extending Finish Construct with
“Finish Accumulators” (Lecture 7)

• Creation
 accumulator ac = newFinishAccumulator(operator, type);

— Operator must be associative and commutative (creating task “owns” accumulator)

• Registration
 finish (ac1, ac2, ...) { ... }

— Accumulators ac1, ac2, ... are registered with the finish scope

• Accumulation
 ac.put(data);

— Can be performed in parallel by any statement in finish scope that registers ac. Note that a put
contributes to the accumulator, but does not overwrite it.

• Retrieval
 ac.get(); // Deterministic operation

— Returns initial value if called before end-finish, or final value after end-finish

— get() is nonblocking because no synchronization is needed (finish provides the necessary
synchronization)

19

20 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Memoization (Lecture 8)

• Memoization - saving and reusing previously computed
values of a function rather than recomputing them
• A optimization technique with space-time tradeoff

• A function can only be memoized if it is referentially
transparent, i.e. functional

• Related to caching
• memoized function "remembers" the results

corresponding to some set of specific inputs
• memoized function populates its cache of results

transparently on the fly, as needed, rather than in
advance

Helpful Link: http://en.wikipedia.org/wiki/Memoization

http://en.wikipedia.org/wiki/Memoization

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

REMINDER: computation structure of C(4,2)
Nodes with calls to ComputeSum() are in red

21

C(4, 2)

C(3, 1) C(3, 2)

C(2, 0) C(2, 1)

1 C(1, 0) C(1, 1)

1 1

C(2, 1) C(2, 2)

1

= 2 = 2

= 3 = 3

= 6

C(1, 0) C(1, 1)

1 1

C(n, k) =
 C(n – 1, k – 1) + C(n – 1, k)

Error Conditions with Finish Accumulators

1. Non-owner task cannot access accumulator outside registered finish

// T1 allocates accumulator a
accumulator a = newFinishAccumulator(…);
a.put(1); // T1 can access a
async { // T2 cannot access a
 a.put(1); Number v1 = a.get();
}

2. Non-owner task cannot register accumulator with a finish

// T1 allocates accumulator a
accumulator a = newFinishAccumulator(...);
async {
 // T2 cannot register a with finish
 finish (a) { async a.put(1); }

}

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)22

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Worksheet #7 solution:
Associativity and Commutativity

Recap:
A binary function f is associative if f(f(x,y),z) = f(x,f(y,z)).
A binary function f is commutative if f(x,y) = f(y,x).

Worksheet problems:
1) Claim: a Finish Accumulator (FA) can only be used with operators that are
associative and commutative. Why? What can go wrong with accumulators if
the operator is non-associative or non-commutative?
You may get different answers in different executions if the operator is non-
associative or non-commutative e.g., an accumulator can be implemented using
one “partial accumulator” per processor core.
2) For each of the following functions, indicate if it is associative and/or
commutative.
a) f(x,y) = x+y, for integers x, y, is associative and commutative
b) g(x,y) = (x+y)/2, for integers x, y, is commutative but not associative
⇒ Incorrect answers found in some worksheets: Associative / Both / Neither
c) h(s1,s2) = concat(s1, s2) for strings s1, s2, e.g., h(“ab”,”cd”) = “abcd”, is
associative but not commutative
⇒ Incorrect answers found in some worksheets: Commutative / Neither

23

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Map Reduce: Summary (Lecture 8)

• Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki, vi)
consists of a key, ki, and a value, vi.
• Assume that the key and value objects are immutable, and

that equality comparison is well defined on all key objects.
• Map function f generates sets of intermediate key-value pairs,

f(ki,vi) = {(k1′ ,v1′),...(km′,vm′)}. The kj′ keys can be different
from ki key in the in of the map function.
• Assume that a flatten operation is performed as a post-

pass after the map operations, so as to avoid dealing with a
set of sets.

• Reduce operation groups together intermediate key-value
pairs, {(k′, vj′)} with the same k’, and generates a reduced key-
value pair, (k′,v′′), for each such k’, using reduce function g

24

Analyze the total WORK and CPL for the Map reduce example:
• Assume that each Map step has WORK = number of input words, and CPL=1
• Assume that each Reduce step has WORK = number of input word-count

pairs, and CPL = log2(# occurrences for input word with largest # pairs)

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Worksheet #8: Analysis of Map Reduce
Example

25

WORK/CPL for all Map steps:
• WORK = 15
• CPL = 1 (ignore impact of

local sums on CPL)
WORK/CPL for Reduce 1 step:
• WORK = 5
• CPL = ceiling(log2(4)) = 2
WORK/CPL for Reduce 2 step:
• WORK = 4
• CPL = ceiling(log2(3)) = 2
Total WORK and CPL
• WORK = 15+5+4 = 24
• CPL = 1 + 2 = 3

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Functional vs. Structural Determinism
(Lecture 9)

• A parallel program is said to be functionally
deterministic if it always computes the same answer
when given the same input

• A parallel program is said to be structurally
deterministic if it always produces the same
computation graph when given the same input

• Data-Race-Free Determinism Property
—If a parallel program is written using the constructs

learned so far (finish, async, futures) and is known to
be data-race-free, then it must be both functionally
deterministic and structurally deterministic

26

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Example: String Search
variation

Data Race
Free?

Functionally
Deterministic?

Structurally
Deterministic?

V1: Count of all occurrences YES YES YES
V2: Existence of an occurrence NO YES YES
V3: Index of any occurrence NO NO YES
V4: Optimized existence of an
occurrence: do not create more
async tasks after occurrence is
found

NO YES NO

V5: Optimized index of any
occurrence: do not create more
async tasks after occurrence is
found

NO NO NO

27

Worksheet #9: Classifying different versions
of parallel search algorithm

Enter “YES” or “NO”, as appropriate, in each box below

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

One-Dimensional Iterative Averaging Example
(Lecture 11)

• Initialize a one-dimensional array of (n+2) double’s with
boundary conditions, myVal[0] = 0 and myVal[n+1] = 1.

• In each iteration, each interior element myVal[i] in 1..n is
replaced by the average of its left and right neighbors.
—Two separate arrays are used in each iteration, one for old values and

the other for the new values

• After a sufficient number of iterations, we expect each
element of the array to converge to myVal[i] =
(myVal[i-1]+myVal[i+1])/2, for all i in 1..n

—

Illustration of an intermediate step for n = 8 (source: Figure 6.19 in Lin-Snyder book)

28

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

HJ code for One-Dimensional Iterative Averaging
using nested forseq-forall structure

1. float[] myVal = new float[n+2];

2. float[] myNew = new float[n+2];

3. … // Intialize myVal, m, n

4. forseq(0, m-1, (iter) -> {

5. // Compute MyNew as function of input array MyVal

6. forall(1, n, (j) -> { // Create n tasks

7. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

8. }); // forall

9. // What is the purpose of line 10 below?

10. float[] temp=myVal; myVal=myNew; myNew=temp;

11. // myNew becomes input array for next iteration

12. }); // for

29

1) Assuming n=9 and the input array below, perform a “half-iteration” of
the iterative averaging example by only filling in the blanks for odd
values of j in the myNew[] array (different from the real algorithm).
Recall that the computation is “myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;”

2) Will the contents of myVal[] and myNew[] change in further iterations?
No, this represents the converged value (equilibrium/fixpoint).
3) Write the formula for the final value of myNew[i] as a function of i and
n. In general, this is the value that we will get if m (= #iterations in
sequential for-iter loop) is large enough.
After a sufficiently large number of iterations, the iterated averaging
code will converge with myNew[i] = myVal[i] = i / (n+1)

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Solution to Worksheet #11: One-dimensional
Iterative Averaging Example

30

index, j 0 1 2 3 4 5 6 7 8 9 10

myVal 0 0 0.2 0 0.4 0 0.6 0 0.8 0 1

myNew 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Barriers (Lecture 12)
• Question: how can we transform this code so as to ensure that all tasks say hello before

any tasks say goodbye, without having to change local ?

• Approach 2: insert a “barrier” (“next” statement) between the hello’s and goodbye’s
1. // APPROACH 2

2. forallPhased (0, m - 1, (i) -> {

3. int sq = i*i;

4. System.out.println(“Hello from task with square = “ + sq);

5. next(); // Barrier

6. System.out.println(“Goodbye from task with square = “ + sq);

7. });

• next " each forallPhased iteration waits at barrier until all iterations
arrive (previous phase is completed), after which the next phase can
start

—Scope of next is the closest enclosing forallPhased statement
—If a forallPhased iteration terminates before executing “next”, then the other

iterations don’t wait for it

31

Phase 0

Phase 1

Worksheet #12: Forall Loops and
Barriers

Draw a “barrier matching” figure similar to lecture 12 slide 11 for the code fragment
below.

1. String[] a = { “ab”, “cde”, “f” };
2. . . . int m = a.length; . . .
3. forallPhased (0, m-1, (i) -> {
4. for (int j = 0; j < a[i].length(); j++) {
5. // forall iteration i is executing phase j
6. System.out.println("(" + i + "," + j + ")");
7. next();
8. }
9. });

32 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Solution

Converting forseq-forall version into a
forall-forseq version with barriers (Lecture 14)

1. double[] gVal=new double[n+2]; gVal[n+1] = 1;

2. double[] gNew=new double[n+2];

3. forallPhased(1, n, (j) -> { // Create n tasks

4. // Initialize myVal and myNew as local pointers

5. double[] myVal = gVal; double[] myNew = gNew;

6. forseq(0, m-1, (iter) -> {

7. // Compute MyNew as function of input array MyVal

8. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

9. next(); // Barrier before next iteration of iter loop

10. // Swap local pointers, myVal and myNew

11. double[] temp=myVal; myVal=myNew; myNew=temp;

12. // myNew becomes input array for next iteration

13. }); // forseq

14. }); // forall

33 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Answer the questions in the table below for the versions of the Iterative
Averaging code shown in slides 7, 8, 10, 12. Write in your answers as
functions of m, n, and nc.

Worksheet #14 Solution: Iterative Averaging
Revisited

34 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Slide 7 Slide 8 Slide 10 Slide 12

How many tasks
are created
(excluding the main
program task)? m*n

n
Incorrect:

n * m

m*nc
Incorrect:

n * nc

nc
Incorrect:
n*m, m*nc

How many barrier
operations (calls to
next per task) are
performed?

0
Incorrect:

m

m
Incorrect:

m*n

0
Incorrect:

m

m
Incorrect:
m*nc, nc

The SPMD version in slide 12 is the most efficient because it only creates nc
tasks. (Task creation is more expensive than a barrier operation.)

Extending HJ Futures for Macro-Dataflow:  
Data-Driven Futures (Lecture 15)

HjDataDrivenFuture<T1> ddfA = newDataDrivenFuture();

• Allocate an instance of a data-driven-future object (container)
• Object in container must be of type T1, and can only be assigned once via

put() operations
• HjDataDrivenFuture extends the HjFuture interface

ddfA.put(V) ;

• Store object V (of type T1) in ddfA, thereby making ddfA available
• Single-assignment rule: at most one put is permitted on a given DDF

35 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Extending HJ Futures for Macro-Dataflow:  
Data-Driven Tasks

asyncAwait(ddfA, ddfB, …, () -> Stmt);

• Create a new data-driven-task to start executing Stmt after all data-driven
futures ddfA, ddfB, … become available (i.e., after task becomes “enabled”)

• Await clause can be used to implement “nodes” and “edges” in a
computation graph

ddfA.get()
• Return value (of type T1) stored in ddfA
• Throws an exception if put() has not been performed

— Should be performed by async’s that contain ddfA in their await
clause, or if there’s some other synchronization to guarantee that the
put() was performed

36 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

 For the example below, will reordering the five async statements change the meaning of the
program (assuming that the semantics of the reader/writer methods depends only on their
parameters)? If so, show two orderings that exhibit different behaviors. If not, explain why not.

 No, reordering the asyncs doesn’t change the meaning of the problem. Regardless of the order,
Task 3 will always wait on Task 1. Task 5 will always wait on Task 2. Task 4 will always wait on
both Task 1 and 2.

1. DataDrivenFuture left = new DataDrivenFuture();

2. DataDrivenFuture right = new DataDrivenFuture();

3. finish {

4. async await(left) leftReader(left); // Task3

5. async await(right) rightReader(right); // Task5

6. async await(left,right)

7. bothReader(left,right); // Task4

8. async left.put(leftWriter()); // Task1

9. async right.put(rightWriter());// Task2

10. }

Name: ___________________ Netid: ___________________

Worksheet 15a: Data Driven Futures

37 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Summary of Phaser Construct
(Lecture 15)

• Phaser allocation
— HjPhaser ph = newPhaser(mode);

– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— HjPhaserMode.SIG, HjPhaserMode.WAIT,  

HjPhaserMode.SIG_WAIT, HjPhaserMode.SIG_WAIT_SINGLE
– NOTE: phaser WAIT is unrelated to Java wait/notify (which we will study later)

• Phaser registration
— asyncPhased (ph1.inMode(<mode1>), ph2.inMode(<mode2>), … () -> <stmt>)

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …
– Child task’s capabilities must be subset of parent’s
– asyncPhased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
— next();

– Advance each phaser that current task is registered on to its next phase
– Semantics depends on registration mode
– Barrier is a special case of phaser, which is why next is used for both

38 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Solution to Worksheet #15b:
Left-Right Neighbor Synchronization using Phasers

COMP 322, Spring 2011 (V.Sarkar)!18

Barrier & P-2-P Sync for 1-D
Averaging!

doPhase1(i)

doPhase2(i)

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

1. finish (() -> {
2. final HjPhaser[] ph =  
 new HjPhaser[m+2]; // array of phaser objects
3. forseq(0, m+1, (i) -> { ph[i] = newPhaser(SIG_WAIT) });
4. forseq(1, m, (i) -> {
5. asyncPhased( 
 ph[i-1].inMode(WAIT),  
 ph[i].inMode(SIG),  
 ph[i+1].inMode(WAIT), () -> {
6. doPhase1(i);
7. next();
8. doPhase2(i); }); // asyncPhased
9. }); // forseq
10.}); // finish

39 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Complete the phased clause below to implement the left-right neighbor
synchronization shown above.

NOTE: Task-to-
phaser mappings can be

many-to-many in general. In
general, it is important to

understand the difference between
computation tasks (async’s) and

synchronization objects
(phasers).

Summary of Parallel Programming
Constructs you’ve learned so far

• Task Parallelism (Unit 1)
—Async (task creation)
—Finish (structured task termination)

• Functional Parallelism (Unit 2)
—Future (task creation)
—Future get() (task termination with return value)
—Accumulators (functional reduction)
—Map-Reduce (functional parallelism & reduction on key-value pairs)

• Loop Parallelism (Unit 3)
—Forall (parallel loops)
—Barriers (all-to-all synchronization)

• Dataflow Parallelism (Unit 4)
—Data-Driven Tasks (dataflow parallelism)
—Phasers (point-to-point synchronization)
—Phaser-specific next operations

40 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

