
COMP 322: Fundamentals of Parallel Programming

Lecture 18: Abstract vs Real Performance - An
“under the hood” look at HJlib

Mack Joyner and Zoran Budimlić
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 18
February 2018

http://comp322.rice.edu

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

HJ-lib Compilation and Execution
Environment

Foo.java

Java compiler Java compiler translates Foo.java to Foo.class, along
with calls to HJ-lib with lambda parameters (async,
finish, future, etc)

Foo.class

HJ-lib source program is a standard Java 8 program

HJ-lib Runtime Environment =
Java Runtime Environment +

HJ-lib libraries

HJ Abstract Performance Metrics,
HJ-Viz output
(all enabled by appropriate options)

HJ-lib Program Output

javac Foo.java

java Foo

HJ runtime initializes m worker threads
(value of m depends on options or default value)

Java 8 IDE

2

All the “magic” happens here!

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Looking under the hood — let’s start
with the hardware

An example compute node with two quad-core Intel Xeon (CPUs, for a
total of 8 cores/node (NOTS has 16 cores/node)

3

Main Memory (DRAM)

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Next, how does a process run on a single
core?

Context switches between two processes can be very expensive!
Source: COMP 321 lecture on Exceptional Control Flow (Alan Cox)

4

(e.g., Java application A) (e.g., Java application B)

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

What happens when executing a Java
program?

• A Java program executes in a
single Java Virtual Machine (JVM)
process with multiple threads

• Threads associated with a single
process can share the same data

• Java main program starts with a
single thread (T1), but can create
additional threads (T2, T3, T4, T5)
via library calls

• Java threads may execute
concurrently on different cores, or
may be context-switched on the
same core

5

T1!

T2!
T4!

T5! T3!

shared code, data!
and process context!

Figure source: COMP 321 lecture on
Concurrency (Alan Cox)

Java application with five threads —-
T1, T2, T3, T4, T5 — all of which can
access a common set of shared objects

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Thread-level Context Switching on the same
processor core

• Thread context switch is cheaper than a process context switch,
but is still expensive (just not “very” expensive!)

• It would be ideal to just execute one thread per core (or hardware
thread context) to avoid context switches

Figure source: COMP 321 lecture on Concurrency (Alan Cox)

6

Thread 1!
(main thread)!

Thread 2!
(peer thread)!

Time!
thread context switch!

thread context switch!

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Now, what happens in a task-parallel Java
program (e.g., HJ-lib, Java ForkJoin, etc)

7

• HJ-lib runtime creates a small number of worker threads, typically
one per core

• Workers push new tasks and “continuations” into a logical work
queue

• Workers pull task/continuation work items from logical work queue
when they are idle (remember greedy scheduling?)

HJ-Lib Tasks &
Continuations

Worker threads

Operating
System

Hardware cores

Ready
Tasks

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)8

Task-Parallel Model: Checkout Counter Analogy

2

• Think of each checkout counter as a processor core

Image sources: http://www.deviantart.com/art/Randomness-20-178737664,
http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)9

Task-Parallel Model: Checkout Counter Analogy

2

• Think of each checkout counter as a processor core
• And of customers as tasks

source: http://www.deviantart.com/art/Randomness-20-178737664

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)10

All is well until a task blocks …

2

• A blocked task/customer can hold up the entire line
• What happens if each checkout counter has a blocked

customer?
source: http://viper-x27.deviantart.com/art/Checkout-Lane-Guest-Comic-161795346

. . .

Approach 1: Create more worker threads
(as in HJ-Lib’s Blocking Runtime)

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)11
2source: http://www.deviantart.com/art/Randomness-5-90424754

• Creating too many worker threads can exhaust system
resources (OutOfMemoryError), and also leads to context-
switch overheads when blocked worker threads get unblocked

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Blocking Runtime (contd)

12

• Assume that five tasks (A1 … A5) are registered on a barrier

• Q: What happens if four tasks (say, A1 … A4) executing on workers
w1 … w4 all block at the same barrier?

• A: Deadlock! (All four tasks will wait for task A5 to enter the barrier.)

• Blocking Runtime’s solution to avoid deadlock: keep task blocked
on worker thread, and create a new worker thread when task blocks

next() barrier operation

To avoid
deadlock, a blocked

worker (e.g., w4) creates
a new worker thread,

w5

Ready
Tasks

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Blocking Runtime (contd)

• Examples of blocking operations

— End of finish

— Future get

— Barrier next

• Approach: Block underlying worker thread when task performs a
blocking operation, and launch an additional worker thread

• Too many blocking operations can result in exceptions and/or
poor performance, e.g.,

— java.lang.IllegalStateException: Error in
executing blocked code! [89 blocked threads]

— Maximum number of worker threads can be configured if needed

— HjSystemProperty.maxThreads.set(100);

13

Approach 2: Suspend task continuations at blocking
points (as in HJ-Lib’s Cooperative Runtime)

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)14
2

• Upon a blocking operation, the currently executing tasks
suspends itself and yields control back to the worker

• Task’s continuation is stored in the suspended queue and added
back into the ready queue when it is unblocked

• Pro: No overhead of creating additional worker threads
• Con: Need to create continuations (enabled by -javaagent option)

C
he

ck
ou

t
co

un
te

r

Suspended
Queue

Cooperative Scheduling: http://en.wikipedia.org/wiki/Computer_multitasking#Cooperative_multitasking

Ready
Queue

Executing
Task

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Continuations
• A continuation is the point immediately following a blocking operation,

such as an end-finish, future get(), barrier/phaser next(), etc.

• Continuations are also referred to as task-switching points
—Program points at which a worker may switch execution between

different tasks (depends on scheduling policy)
1.finish { // F1

2. async A1;

3. finish { // F2

4. async A3;

5. async A4;

6. }

7. S5;

8.}
Continuations

15

Cooperative Scheduling
(view from a single worker)

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)16
10

block

…

unblock

suspend

suspend

…

resume

suspend/complete

Useful work
for some

other task on
same worker

thread
block

tim
e

(in
cr

ea
se

s
do

w
nw

ar
ds

)

Task-1 Task-1

Task-2

Cooperative runtime
automatically creates

continuations at suspend
points via bytecode

instrumentation enabled
by -javaagent option

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)17

HJ-lib’s Cooperative Runtime (contd)

22

…

task
task
task

task
task

…

EDC EDC

…

Ready/Resumed Task Queues
Suspended Tasks

registered with “Event-Driven
Controls (EDCs)”

Worker Threads Synchronization objects
that use EDCs

EDC

{ }task
{ }task

{ }task

Any operation that contributes to unblocking a task can be viewed as an event e.g., task
termination in finish, return from a future, signal on barrier, put on a data-driven-future, …

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Why are Data-Driven Tasks (DDTs)
more efficient than Futures?

• Consumer task blocks on get() for each future that it reads,
whereas async-await does not start execution till all Data-
Driven Futures (DDFs) are available
— An “asyncAwait” statement does not block the worker,

unlike a future.get()
— No need to create a continuation for asyncAwait; a data-

driven task is directly placed on the Suspended queue by
default

• Therefore, DDTs can be executed on a Blocking Runtime
without the need to create additional worker threads, or on a
Cooperative Runtime without the need to create
continuations

18

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Summary: Abstract vs. Real
Performance in HJlib

• Abstract Performance
—Abstract metrics focus on operation counts for WORK and CPL, regardless of

actual execution time
• Real Performance

—HJlib uses ForkJoinPool implementation of Java Executor interface with
Blocking or Cooperative Runtime (option-controlled)

19

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Announcements & Reminders
• HW3 CP 1 is available and due today by 11:59pm

• Watch the topic 4.1, 4.4 videos for the next lecture
• Use Piazza (public or private posts, as appropriate) for all

communications re. COMP 322
• See Office Hours link on course web site for latest office hours

schedule.

20

https://wiki.rice.edu/confluence/display/PARPROG/322OfficeHours

