COMP 322: Fundamentals of Parallel Programming

Lecture 27: Safety and Liveness Properties, Java
Synchronizers, Dining Philosophers Problem

Mack Joyner and Zoran Budimli¢
{mjoyner, zoran}@rice.edu

http:/comp322.rice.edu

COMP 322 Lecture 27
March 2018



Worksheet #26a solution: use of tryLock()

Rewrite the transferFunds() method below to use j.u.c. locks with calls to
tryLock (see slide 8) instead of synchronized. Your goal is to write a correct
implementation that never deadlocks, unlike the buggy version below (which
can deadlock). Assume that each Account object already contains a reference
to a ReentrantLock object dedicated to that object e.g., from.lock() returns the
lock for the from object. Sketch your answer below using pseudocode.

public void transferFunds (Account from, Account to, int amount) ({
while (true) {
// assume that trylock() does not throw an exception
boolean fromFlag = from.lock.trylock() ;
if (!'fromFlag) continue;
boolean toFlag = to.lock.trylock() ;
if ('toFlag) { from.lock.unlock(); continue; }
try { from.subtractFromBalance (amount) ;

© 0o NSOk oD~

to.addToBalance (amount) ; break; }

10. finally { from.lock.unlock(); to.lock.unlock(); }
11. } // while

12. }

2 COMP 322, Spring 2018 (M.Joyner, Z. Budimli¢) D



Worksheet #26b solution:
Linearizability of method calls on a concurrent object

Is this a linearizable execution for a FIFO queue, q?

Time | Task A Task B
0 Invoke q.enq(x)
1 Return from q.enq(x)
2 Invoke q.enq(y)
3 Invoke q.deq() Work on q.enq(y)
4 Work on q.deq() Return from q.enq(y)
5 Return y from q.deq()

No! q.enq(x) must precede g.enq(y) in all linear sequences of
method calls invoked on g. It is illegal for the q.deq() operation to
returny.

3 COMP 322, Spring 2018 (M.Joyner, Z. Budimlic) %\d



Outline

o Safety and Liveness

e Java Synchronizers: Semaphores

e Dining Philosophers Problem

4 COMP 322, Spring 2018 (M.Joyner, Z. Budimlic)



Safety vs. Liveness

* In aconcurrent setting, we need to specify both the safety and the
liveness properties of an object

* Need a way to define

— Safety: when an implementation is functionally correct (does
not produce a wrong answer)

— Liveness: the conditions under which it guarantees progress
(completes execution successfully)

o Examples of safety

« Data race freedom is a desirable safety property for parallel
programs (Module 1)

* Linearizability is a desirable safety property for concurrent
objects (Module 2)

5 COMP 322, Spring 2018 (M.Joyner, Z. Budimlic) )



Liveness

Liveness = a program’s ability to make progress in a timely
manner

Termination (“no infinite loop”) is not necessarily a requirement for
liveness

e some applications are designed to be non-terminating

Different levels of liveness guarantees (from weaker to stronger)
for tasks/threads in a concurrent program

1. Deadlock freedom
2. Livelock freedom
3. Starvation freedom
4. Bounded wait

COMP 322, Spring 2018 (M.Joyner, Z. Budimli¢) )



1. Deadlock-Free Parallel Program
Executions

A parallel program execution is deadlock-free if no task’s execution remains
incomplete due to it being blocked awaiting some condition

Example of a program with a deadlocking execution

// Thread T1 // Thread T2
public void leftHand() { public void leftHand() {
synchronized(obj1) { synchronized(obj2) {
synchronized(obj2) { synchronized(obj1) {
// work with obj1 & obj2 // work with obj2 & obj1
} }
} }

in this case, Task1 and Task2 are in a deadlock éycle.

— Three constructs that can lead to deadlock in HJlib: async await, finish w/ actors,
explicit phaser wait (instead of next)

— There are many constructs that can lead to deadlock cycles in other programming
models (e.g., thread join, synchronized, locks in Java)

COMP 322, Spring 2018 (M.Joyner, Z. Budimlic)



2. Livelock-Free Parallel Program
Executions

o Aparallel program execution exhibits livelock if two or more tasks repeat the
same interactions without making any progress (special case of nontermination)

e Livelock example:

// Task T1 // Task T2
incrToTwo(AtomicInteger ai) { decrToNegTwo(AtomicInteger ai) {
// increment ai till it reaches 2 // decrement ai till it reaches -2
while (ai.incrementAndGet() < 2); while (a.decrementAndGet() > -2);
} }

* Many well-intended approaches to avoid deadlock result in livelock instead

e Any HJlib program that uses only Module 1 features, and is data-race-free, is
guaranteed to be livelock-free (may be nonterminating in a single task, however)

8 COMP 322, Spring 2018 (M.Joyner, Z. Budimlic)



3. Starvation-Free Parallel Program
Executions

o A parallel program execution exhibits starvation if some task is repeatedly
denied the opportunity to make progress

— Starvation-freedom is sometimes referred to as “lock-out freedom”

— Starvation is possible in HJ programs, since all tasks in the same program
are assumed to be cooperating, rather than competing

— If starvation occurs in a deadlock-free HJ program, the “equivalent”
sequential program must be non-terminating (infinite loop)

o Classic source of starvation for OS threads: “Priority Inversion”

— Thread A is at high priority, waiting for result or resource from Thread C at
low priority
— Thread B at intermediate priority is CPU-bound

— Thread C never runs (because its priority is lower than B’s priority), hence
thread A never runs

— Fix: when a high priority thread waits for a low priority thread, boost the
priority of the low-priority thread

9 COMP 322, Spring 2018 (M.Joyner, Z. Budimlic) b@ﬁ



4. Bounded Wait

o Aparallel program execution exhibits bounded wait if each task
requesting a resource should only have to wait for a bounded
number of other tasks to “cut in line” i.e., to gain access to the
resource after its request has been registered.

o [f bound =0, then the program execution is fair

10

A
COMP 322, Spring 2018 (M.Joyner, Z. Budimlic) Ey’!



Outline

o Safety and Liveness

e Java Synchronizers: Semaphores

e Dining Philosophers Problem

11 COMP 322, Spring 2018 (M.Joyner, Z. Budimlic)



Key Functional Groups in
java.util.concurrent (j.u.c.)

e Atomic variables
— The key to writing lock-free algorithms

e Concurrent Collections:
— Queues, blocking queues, concurrent hash map, ...
— Data structures designed for concurrent environments

e Locks and Conditions
— More flexible synchronization control
— Read/write locks

e Executors, Thread pools and Futures
— Execution frameworks for asynchronous tasking

e Synchronizers: Semaphore, Latch, Barrier, Exchanger
— Ready made tools for thread coordination

12 COMP 322, Spring 2018 (M.Joyner, Z. Budimlic) %\d



Semaphores

o Conceptually serve as “permit” holders
— Construct with an initial number of permits

— acquire () : waits for permit to be available, then “takes”
one, i.e., decrements the count of available permits

— release () : “returns” a permit, i.e., increments the count of
available permits

— But no actual permits change hands
— The semaphore just maintains the current count
— Thread performing release() can be different from the thread
performing acquire()
o “fair” variant hands out permits in FIFO order

o Useful for managing bounded access to a shared resource

13 COMP 322, Spring 2018 (M.Joyner, Z. Budimlic) b@ﬁ



Bounded Blocking Concurrent List
usina Semaphores

1. public class BoundedBlockingList {

2. final int capacity;

3. final ConcurrentlLinkedList list = new ConcurrentLinkedList () ;
4, final Semaphore sem;

5. public BoundedBlockingList(int capacity) ({

6. this.capacity = capacity;

1. sem = new Semaphore (capacity) ;

8. 1}

9. public void addFirst(Object x) throws InterruptedException {
10. sem.acquire(); // blocks until a permit is available

11. try { list.addFirst(x); }

12 catch (Throwable t){ sem.release(); rethrow(t); } // only performed on exception

13. '}

14. public boolean remove (Object x) {

15. if (list.remove(x)) { sem.release(); return true; }
16. return false;

17. }

18. .. } // BoundedBlockingList

14 COMP 322, Spring 2018 (M.Joyner, Z. Budimlic) %\d



Outline

o Safety and Liveness

e Java Synchronizers: Semaphores

e Dining Philosophers Problem
— Acknowledgments

- CMSC 330 course notes, U. Maryland

http://lwww.cs.umd.edu/~lam/cmsc330/summer2008/
lectures/class20-threads_classicprobs.ppt

— Dave Johnson (COMP 421 instructor)

15 COMP 322, Spring 2018 (M.Joyner, Z. Budimlic) %\%ﬁ



The Dining Philosophers Problem

Constraints
* Five philosophers either eat or think

» They must have two forks to eat
(chopsticks are a better motivation!)

« Can only use forks on either side of
their plate

» No talking permitted

Goals

» Progress guarantees
« Deadlock freedom
* Livelock freedom
 Starvation freedom

* Maximum concurrency (no one
should starve if there are
available forks for them)

16 COMP 322, Spring 2018 (M.Joyner, Z. Budimlic) b@ﬁ



General Structure of Dining
Philosophers Problem: PseudoCode

1. int numPhilosophers = 5;

2. int numForks = numPhilosophers;

3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5. while(true) {

6 Think ;

7 Acquire forks;

8. // Left fork = fork[p]

9 // Right fork = fork[(p-1)%numForks]
10. Eat;

11. }// while

12.} // forall

17 COMP 322, Spring 2018 (M.Joyner, Z. Budimlic) %\d



Solution 1: using Java’s synchronized
statement

1. int numPhilosophers = 5;

2. int numForks = numPhilosophers;

3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5. while(true) {

6 Think ;

7. synchronized(fork[p])

8 synchronized(fork[(p-1)%numForks]) {
9 Eat ;

10. }

11. )}

12. } // while

13.} / forall

18 COMP 322, Spring 2018 (M.Joyner, Z. Budimli¢) D



Solution 2: using Java’s Lock library

1. int numPhilosophers = 5;

2. int numForks = numPhilosophers;

3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5. while(true) {

6. Think;

7. if (Ifork[p].lock.tryLock()) continue;

8. if (Ifork[(p-1)%numForks].lock.tryLock()) {

9. fork[p].lock.unLock(); continue;

10. }

11. Eat;

12. fork[p].lock.unlock();fork[(p-1)%numForks].lock.unlock();
13. } // while

14.} // forall

19 COMP 322, Spring 2018 (M.Joyner, Z. Budimli¢) D



Solution 3: using HJ’s isolated statement

1. int numPhilosophers = 5;

2. int numForks = numPhilosophers;

3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5. while(true) {

6. Think;

7. isolated {

8. Pick up left and right forks;
0. Eat ;

10. }

11. } // while

12.} // forall

20 COMP 322, Spring 2018 (M.Joyner, Z. Budimli¢) D



Solution 4: using HJ’s object-based isolation

1. int numPhilosophers = 5;
int numForks = numPhilosophers;
. Fork[] fork = ... ; // Initialize array of forks
. forall(point [p] : [0:numPhilosophers-1]) {
while(true) {
Think ;
isolated(fork[p], fork[(p-1)%numForks]) {
Eat ;
}
10. } // while
11.} // forall

© ® N O O A ® N

21 COMP 322, Spring 2018 (M.Joyner, Z. Budimlic) p@s



Solution 5: using Java’s Semaphores

1. int numPhilosophers = 5; “true” parameter

2. int numForks = numPhilosophers; creates a semaphore

3. Fork[] fork = ... ; // Initialize array of forks that g.uar'am‘ees
fairness

4. Semaphore table = new Semaphore(3, true); —

5. for (i=0;icnumForks;i++) fork[i].sem = new Semaphore(1, true);

6. forall(point [p] : [0:numPhilosophers-1]) {

7. while(true) {

8. Think ;

9. table.acquire(); // At most 3 philosophers at table, assume optimal table assignment

10. fork[p].sem.acquire(); // Acquire left fork

11. fork[(p-1)%numForks].sem.acquire(); // Acquire right fork

12. Eat;

13. fork[p].sem.release(); fork[(p-1)%numForks].sem.release();

14. table.release();

15. } // while

16.} // forall

22 COMP 322, Spring 2018 (M.Joyner, Z. Budimli¢) D



