
COMP 322: Fundamentals of Parallel Programming

Lecture 37: Algorithms based on Parallel Prefix
(Scan) operations

Mack Joyner and Zoran Budimlić
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 37
April 2018

25

Worksheet #36: Branching in SIMD code

COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Consider SIMD execution of the following pseudocode with 8 threads.
Assume that each call to doWork(x) takes x units of time, and ignore
all other costs. How long will this program take when executed on 8
GPU cores, taking into consideration the branching issues discussed
in Slide 9?

1. int tx = threadIdx.x; // ranges from 0 to 7
2. if (tx % 2 = 0) {
3. S1: doWork(1); // Computation S1 takes 1 unit of time
4. }
5. else {
6. S2: doWork(2); // Computation S2 takes 2 units of time
7. }

Solution: 3 units of time

3 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)COMP 322, Spring 2018

GPU Design Idea #2: lock stepping w/
branching

13 COMP 322, Spring 2018

Non branching code;

if(flag > 0){ /* branch */
x = exp(y);
y = 2.3*x;

}
else{
x = sin(y);
y = 2.1*x;

}

Non branching code;

ALU
1

ALU
2

ALU
3

ALU
4

ALU
5

ALU
6

ALU
7

ALU
8

� � � � � � � �

T T F T T F F F

� � X � � X X X

� � X � � X X X

X X � X X � � �

X X � X X � � �

Time

The cheap branching approach means that some ALUs are idle as all ALUs
traverse all branches [executing NOPs if necessary]

In the worst possible case we could see 1/8 of maximum performance.

� � � � � � � �

Beyond Sum/Reduce Operations —
Prefix Sum (Scan) Problem Statement

Given input array A, compute output array X as follows

• The above is an inclusive prefix sum since X[i] includes A[i]

• For an exclusive prefix sum, perform the summation for 0 <=j <i

• It is easy to see that inclusive prefix sums can be computed sequentially in
O(n) time …

// Copy input array A into output array X

X = new int[A.length]; System.arraycopy(A,0,X,0,A.length);

// Update array X with prefix sums

for (int i=1 ; i < X.length ; i++) X[i] += X[i-1];

• … and so can exclusive prefix sums

4 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Summary of Parallel Prefix Sum
Algorithm (Recap from Lecture 13)

• Critical path length, CPL = O(log n)

• Total number of add operations, WORK = O(n)

• Optimal algorithm for P = O(n/log n) processors
— Adding more processors does not help

• Parallel Prefix Sum has several applications that go beyond
computing the sum of array elements

• Parallel Prefix Sum can be used for any operation that is
associative (need not be commutative)
— In contrast, finish accumulators required the operator to be

both associative and commutative

5 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Parallel Filter Operation (Recap)
[Credits: David Walker and Andrew W. Appel (Princeton), Dan Grossman (U. Washington)]

Given an array input, produce an array output containing only
elements such that f(elt) is true, i.e., output =
input.parallelStream.filter(f).toArray

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
 f: is elt > 10

 output [17, 11, 13, 19, 24]

Parallelizable?
—Finding elements for the output is easy
—But getting them in the right place seems hard

6 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Parallel prefix to the rescue (Recap)
1. Parallel map to compute a bit-vector for true elements (can use Java

streams)
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector (not available in Java streams)
 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output (can use Java streams)
 output [17, 11, 13, 19, 24]

  

7 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){
 if(bits[i]==1)
 output[bitsum[i]-1] = input[i];
}

Examples of Problems that can be solved
using Parallel Prefix Sum Operations

• Lexical comparisons of two strings of length O(n), to see which
should appear first in a dictionary

• To implement radix sort

• To implement quicksort

• To perform lexical analysis. For example, to parse a program into
tokens.

• To search for regular expressions. For example, to implement the
UNIX grep program.

• . . .

8 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Example Applications of Parallel Prefix
Algorithm

• Prefix Max with Index of First Occurrence: given an input array A,
output an array X of objects such that X[i].max is the maximum of
elements A[0…i] and X[i].index contains the index of the first
occurrence of X[i].max in A[0…i]

• Filter and Packing of Strings: given an input array A identify
elements that satisfy some desired property (e.g., uppercase), and
pack them in a new output array. (First create a 0/1 array for
elements that satisfy the property, and then compute prefix sums
to identify locations of elements to be packed.)
—Useful for parallelizing partitioning step in Parallel Quicksort algorithm

9 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Parallelizing Quicksort Example

• Step 1: pick pivot as median of three

10 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

8 1 4 9 0 3 5 2 7 6

• Steps 2: implement partition step as two filter/pack
operations that store result in a second array

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

• Step 3: Two recursive sorts in parallel

Use of Prefix Sums to parallelize partition() in
Quicksort

1. partition(int[] A, int M, int N) {

2. pivot = … ; // choose pivot from M..N

3. Allocate temporary buffer[] with size N-M+1 elements

4. forall (point [k] : [0:N-M]) { // parallel loop

5. lt[k] = (A[M+k] < A[pivot] ? 1 : 0); // bit vector with < comparisons

6. eq[k] = (A[M+k] == A[pivot] ? 1 : 0); // bit vector with = comparisons

7. gt[k] = (A[M+k] > A[pivot] ? 1 : 0); // bit vector with > comparisons

8. buffer[k] = A[M+k]; // Copy A[M..N] into buffer

9. }

10. // computePrefixSums() returns the prefix sum array and the total count of 1’s in the input array

11. ltPs, ltCount = computePrefixSums(lt);

12. eqPs, eqCount = computePrefixSums(eq);

13. fgtPs, gtCount = computePrefixSums(gt);

14. // Parallel move from buffer into A

15. forall (point [k] : [0:N-M]) {

16. if(lt[k]==1) A[M+ltPS[k]-1] = buffer[k];

17. else if(eq[k]==1) A[M+ltCount+eqPS[k]-1] = buffer[k];

18. else A[M+ltCount+eqCount+gtPS[k]-1] = buffer[k];

19. }

20. } // partition

11 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Formalizing Parallel Prefix:
Scan and Pre-scan operations

• The scan operation is an inclusive parallel prefix sum operation.

• The prescan operation is an exclusive parallel prefix sum operation. It
takes a binary associative operator ⊕ with identity I, and a vector of n
elements, [a0, a1, ..., an−1], and returns the vector [I,a0,(a0 ⊕a1),...,(a0
⊕a1 ⊕…⊕an−2)].

• A prescan can be generated from a scan by shifting the vector right by
one and inserting the identity. Similarly, the scan can be generated
from the prescan by shifting left, and inserting at the end the sum of
the last element of the prescan and the last element of the original
vector.

• The scan operator was introduced in APL in the 1960’s, and has been
popularized recently in more modern languages, most notably the
NESL project in CMU

12 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Line-of-Sight Problem
• Problem Statement: given a terrain map in the form of a grid of

altitudes and an observation point, X, on the grid, find which points
are visible along a ray originating at the observation point. Note
that a point on a ray is visible if and only if no other point between
it and the observation point has a greater vertical angle.

13 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

1.3 Line-of-Sight and Radix-Sort 45

procedure line-of-sight(altitude)

in parallel for each index i
angle[i] ← arctan(scale × (altitude[i] - altitude[0])/ i)

max-previous-angle ← max-prescan(angle)

in parallel for each index i
if (angle[i] > max-previous-angle[i])

result[i] ← "visible"

else

result[i] ← not "visible"

FIGURE 1.7

The line-of-sight algorithm for a single ray. The X marks the observation
point. The visible points are shaded. A point on the ray is visible if no
previous point has a greater angle.

in the angle vector (see Figure 1.7). A prescan using the operator maximum

(max-prescan) is then executed on the angle vector, which returns to each point
the maximum previous angle. To test for visibility each point only needs to
compare its angle to the result of the max-prescan. This can be generalized to
finding all visible points on the grid. For n points on a ray, the complexity of
the algorithm is the complexity of the scan, TS(n, p) = O(n/p + lg n) on an
EREW PRAM.

We now consider another example, a radix sort algorithm. The algorithm
loops over the bits of the keys, starting at the lowest bit, executing a split

• Define angle[i] = angle of point i on ray
relative to observation point, X (can be
computed from altitudes of X and i)

• A max-prescan on angle[*] returns to
each point the maximum previous angle.

• Each point can compare its angle with
its max-prescan value to determine if it
will be visible or not

Segmented Scan
• Goal: Given a data vector and a flag vector as inputs, compute

independent scans on segments of the data vector specified by the
flag vector.

14 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

Using Segmented Scan for Quicksort

15 COMP 322, Spring 2018 (M.Joyner, Z. Budimlić)

