COMP 322 Spring 2019

Lab 10: Message Passing Interface (MPI)

Instructor: Mackale Joyner, Co-Instructor: Zoran Budimlié¢

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

Goals for this lab

Install VirtualBox and a Ubuntu virtual machine with MPI support on your laptop.

e Use MPI to distribute computation across multiple processes.

Understand the parallelization of matrix-matrix multiply across multiple, separate address spaces.

Complete an MPI implementation of matrix-matrix multiplication by filling in the correct communi-
cation calls.

1 Overview

In this lab you will use OpenMPI’s Java APIs to gain experience with distributed computing using MPI.
You will complete a dense matrix-matrix multiply implementation by filling in the missing MPI API calls in
a partial MPI program.

2 Preliminaries

In order to avoid congestion on NOTS and to help you prepare for HW5 (which also uses MPI), we will be
using a virtual machine installed locally on your laptop to write, test and run MPI programs.

First, you will need to download and install the latest version of VirtualBox on your laptop. You can
download the version for your platform directly from VirtualBox:

e https://wuw.virtualbox.org/

Once you have downloaded and installed VirtualBox, you will need to download the virtual appliance from
here:

e https://rice.box.com/s/aqe89uz6f0f5opvloxzik5df36qmengp

This should download a file COMP322-MPI-S19. ova locally on your computer. Open the .ova file in VirtualBox
and accept all the default settings.

The .ova file is a virtual machine that has Ubuntu installed, along with Java 8, IntelliJ and MPI, all the
tools you will need for Lab 10 and HW5.

Once the virtual machine has started, you should have a desktop with IntelliJ link on the taskbar on the
left. Click on that, and it should start the IntelliJ environment that should be very familiar to you by now.
Obviously, you won’t have any of your previous homewoks or labs here (since it’s running in a brand new
virtual machine), but that’s not an issue. You should be able to check out and start working on your Lab
10 as described below.

1of 3


http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu

COMP 322 Lab 10: Message Passing Interface (MPI)
Spring 2019

Lab Projects

The template code and Maven project for this lab are located at:
e https://svn.rice.edu/r/comp322/turnin/S19/NETID/1ab_10

Please use the subversion command-line client or IntelliJ to checkout the project into appropriate directories
locally. For example, you can use the following command from a shell:

$ svn checkout https://svn.rice.edu/r/comp322/turnin/S19/NETID/lab_10 lab_10

Do all your development and testing within your local virtual machine. You will have to run the script
e run.sh

This script is in your project directory. It launches the MPI runtime within the virtual machine and runs
the tests. For this lab, you will not be able to run the test cases directly from within IntelliJ, since IntelliJ
cannot create multiple MPI processes needed for the MPI execution.

3 Matrix Multiply using MPI

Your assignment today is to fill in incomplete MPI calls in a matrix multiply example that uses MPI to
distribute computation and data across multiple processes. You should complete all the necessary MPI calls
in MatrixMult.java to make it work correctly. There are comments (TODOs numbered 1 to 14) in the
code that will help you with modifying these MPI calls. You can look at the slides for Lectures 28 and
29 for an overview of the MPI send() and recv() calls, and at https://fossies.org/dox/openmpi-2.1.0/
namespacempi.html for the API details.

The provided parallel matrix-matrix multiply example works as follows:
1. The master process (MPI.COMM_WORLD.getRank() == 0) gets the size of the matrices to be multiplied
and the number of processes to use from the unit tests.

2. Each MPI process allocates its own input matrices (a, b) and output matrix (c). Note that this
code uses a flattened representation for matrices, i.e., a square matrix of size N x N is stored as a
one-dimensional array containing N? elements.

3. The master process initializes its local copies of each matrix and transmits their contents to all other
MPI processes. At the same time the master process also assigns each process a set of matrix rows
which that process is responsible for processing.

4. Each MPI process computes the contents of its assigned rows in the final output matrix c.

5. The master process collects the results of each worker process back to a single node and shuts down.

4 Tips

e There are only two provided unit tests. One runs a small experiment and prints the input and output
matrices to help with debugging. The other processes larger matrices and will be used to verify the
performance and correctness of your implementation.

2 0f 3


https://fossies.org/dox/openmpi-2.1.0/namespacempi.html
https://fossies.org/dox/openmpi-2.1.0/namespacempi.html

COMP 322 Lab 10: Message Passing Interface (MPI)
Spring 2019

5

e Note that all MPI send and recv APIs (e.g. https://fossies.org/dox/openmpi-2.1.0/classmpi_

1_1Comm.html#a7e913a77ef4b8b1975035792cde6d717) accept arrays as their buf argument. Even
when sending a single integer, you will need to box it as a singleton array. Passing scalars to the buf
argument is by far the most common error made on this lab.

When running tests, the performance of your code on 1, 2, 4, and 8 MPI processes will be printed. It
is safe to ignore any error warnings that begin with “Java HotSpot(TM) 64-Bit Server VM warning”.
Look for text similar to “Processing a 1024 x 1024 matrix with 1 MPI processes” followed a few lines
later by a print starting with “Time elapsed = ”. There will be sections that look like this for each
number of MPI processes, each of which include the time it took for your solution to run with that
many MPI processes.

Deliverables

Once you have completed the template MPI program and tested it locally within the virtual machine, submit
myjob.slurm to NOTS. You'll need to commit your changes you made in your virtual machine, then log into
NOTS and checkout your project from SVN, then submit the Slurm job. The teaching staff will want to see
some performance improvement from 1 to 2 to 4 to 8 processes, before checking off a successful completion
of your lab.

30f3


https://fossies.org/dox/openmpi-2.1.0/classmpi_1_1Comm.html#a7e913a77ef4b8b1975035792cde6d717
https://fossies.org/dox/openmpi-2.1.0/classmpi_1_1Comm.html#a7e913a77ef4b8b1975035792cde6d717

	Overview
	Preliminaries
	Matrix Multiply using MPI
	Tips
	Deliverables

