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Moore’s Law and Dennard Scaling
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Gordon Moore (co-founder of Intel) predicted in
1965 that the transistor density of
semiconductor chips would double roughly
every 1-2 years (Moore’s Law)

= area of transistor halves every 1-2 years

= feature size reduces by /2 every 1-2 years

Slide source: Jack Dongarra
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Dennard Scaling states
that power for a fixed
chip area remains
constant as transistors
grow smaller




Recent Technology Trends
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=> Parallelism must be
managed by software!
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What is Parallel Computing?

 Parallel computing: using multiple processors in parallel to solve
problems more quickly than with a single processor and/or with less
energy

« Example of a parallel computer

—An 8-core Symmetric Multi-Processor (SMP) consisting of four dual-
core chip microprocessors (CMPs)
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All Computers are Parallel Computers ---
Why?

aNd>0ID
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Parallelism Saves Power
(Simplified Analysis)

Nowadays (post Dennard Scaling), Power ~ (Capacitance) * (Voltage) * (Frequency)
and maximum Frequency is capped by Voltage

=>» Power is proportional to (Frequency)’

Baseline example: single 1GHz core with power P

Option A: Increase clock frequency to 2GHz =» Power = 8P

Option B: Use 2 cores at 1 GHz each =» Power = 2P

« Option B delivers same performance as Option A with 4x less power ... provided
software can be decomposed to run in parallel!
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What is Parallel Programming?

« Specification of operations that can

be executed in parallel Task A Task B

» Aparallel program is decomposed
into sequential subhcomputations
called tasks

 Parallel programming constructs
define task creation, termination, and
interaction

Schematic of a dual-core
Processor

>
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Example of a Sequential Program:
Computinag the sum of arrav elements

Algorithm 1: Sequential ArraySum

Computation Graph

X[O]

Input: Array of numbers, X.

Output: sum = sum of elements in array X. 0

sum <— 0;

for 1 < 0 to X.length — 1 do l
L sum <— sum + X [i];

X[1]

return sum;

Observations: X[2]

e The decision to sum up the elements from left /
to right was arbitrary

« The computation graph shows that all
operations must be executed sequentially
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Parallelization Strategy for two cores
(Two-wav Parallel Arrav Sum)

Task O0: Compute sum of Task 1: Compute sum of
lower half of array upper half of array
®

!

Compute total sum

Basic idea:

« Decompose problem into two tasks for partial sums
« Combine results to obtain final answer

 Parallel divide-and-conquer pattern
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Async and Finish Statements for Task
Creation and Termination (Pseudocode)

async S finish S

= Execute S, but wait until all
asyncs in S’s scope have
terminated.

Creates a new child task that
executes statement S

// T,(Parent task)
STMTO ;
finish ({ //Begin finish
async {
STMT1; //T,(Child task)
}
STMT2; //Continue in T,
//Wait for T,
} //End finish
STMT3; //Continue in T,
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Two-way Parallel Array Sum
using async & finish constructs

Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
// Start of Task Tl (main program)
suml < 0; sum?2 < 0;
// Compute suml (lower half) and sum2 (upper half) in parallel.
finish{
async{
// Task T2
for i < 0 to X.length/2 — 1 do
L suml < suml + X[i];

b

async{
// Task T3
for i + X.length/2 to X.length — 1 do
L sum2 < sum?2 + X [i];

b
b

// Task T1 waits for Tasks T2 and T3 to complete
// Continuation of Task T1

sum <— suml + sum?2;

return sum;
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Course Syllabus

« Fundamentals of Parallel Programming taught in three modules

1. Parallelism
2. Concurrency
3. Locality & Distribution

e Each module is subdivided into units, and each unit into topics

 Lecture and lecture handouts will introduce concepts using pseudocode notations

 Labs and programming assignments will be in Java 8
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—Initially, we will use the Habanero-Java (HJ) library developed at Rice as a pedagogic
parallel programming model

- HJ-lib is a Java 8 library (no special compiler support needed)

- HJ-lib contains many features that are easier to use than standard Java threads/
tasks, and are also being added to future parallel programming models

—Later, we will learn parallel programming using standard Java libraries, and
combinations of Java libs + HJ-lib
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Grade Policies

Course Rubric
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Homework (5) 40% (written + programming components)
-+ Weightage proportional to # weeks for homework

Exams (2) 40% (scheduled midterm + scheduled final)
Labs 10% (labs need to be checked off by Monday)
Quizzes 5% (on-line quizzes on Canvas)

Class Participation 5% (in-class worksheets)
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Next Steps

IMPORTANT:

—Bring your laptop to this week’s lab at 4pm on Thursday (HH
100)

—Watch videos for topics 1.2 & 1.3 for next lecture on Wednesday

HW1 will be assigned on Jan 9th and be due on Jan 23rd.
(Homework is normally due on Wednesdays.)

Each quiz (to be taken online on Canvas) will be due on the Friday
after the unit is covered in class. The first quiz for Unit 1 (topics 1.1
- 1.5) is due by Jan 25.

See course web site for syllabus, work assignments, due dates, ...

http://comp322.rice.edu
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https://canvas.rice.edu/courses/1844/pages/videos-for-unit-1-task-level-parallelism?module_item_id=44098
http://comp322.rice.edu

OFFICE HOURS

 Regular office hour schedule can be found at
Office Hours link on course web site

Send email to instructors (mjoyner@rice.edu,
zoran@rice.edu) if you need to meet some other
time this week

And remember to post questions on Piazza!
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