COMP 322/ ELEC 323:
Fundamentals of

Parallel Programming
Lecture 1: Task Creation & Termination
(async, finish)

Instructors: Mack Joyner, Zoran Budimli¢
Department of Computer Science, Rice University
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 1 07 January 2019 /A

http://comp322.rice.edu

Special thanks to Vivek Sarkar!

COMP 322 Lecture 1 07 January 2019 @

Your Teaching Staff!

* Undergraduate TAs

— Liam Bonnage, Harrison Brown, Mustafa El-Gamal,
Krishna Goel, Ryan Green, Ryan Han, Rishu Harpavat,
Namanh Kapur, Tian Lan, Tam Le, Will LeVine, Eva Ma,
Hamza Nauman, Rutvik Patel, Aryan Sefidi, Jeemin
Sim, Tory Songyang, Jiaqi Wang, Erik Yamada, Yifan
Yang, Aydin Zanagar

 Graduate TAs
— Jonathan Sharman, Srdjan Milakovic

e Instructors
— Mack Joyner, Zoran Budimli¢

COMP 322, Spring 2019 (M. Joyner, Z. Budimli¢)

Moore’s Law and Dennard Scaling

1975 1980 1985 1990 1995
10M Micro. 500
(transistors) 00 (mips)
™M 4 25
Pentium"
‘ — Proocessor
BO4B6
100K @ 1802386 10
BO286
10K 2086 01
BO&O
‘.m(},z 0.01

Gordon Moore (co-founder of Intel) predicted in
1965 that the transistor density of
semiconductor chips would double roughly
every 1-2 years (Moore’s Law)

= area of transistor halves every 1-2 years

= feature size reduces by /2 every 1-2 years

Slide source: Jack Dongarra

4 COMP 322, Spring 2019 (M. Joyner, Z. Budimlic)

Dennard Scaling states
that power for a fixed
chip area remains
constant as transistors
grow smaller

Recent Technology Trends

10,000,000
Chip density (transistors) is

increasing ~2x every 2 years

1,000,000
Clock speed is plateauing
below 10 GHz so that chip s
power stays below 100W '
Instruction-level parallelism 10,000
(ILP) in hardware has also
plateaued below 10 i

instructions/cycle

100

=> Parallelism must be
managed by software!

10

0
5 COMP 3

—

Source: Intel, Microsoft (Sutter) and Stanford
(Olukotun, Hammond)

A
A% I
‘.
A A
1+ ..#
o

aPower (W)
@ PerfiClock (ILP)

= Transistors (000)
¢ Clock Speed (MHz)

—

1970

1975 1980 1985 1990 1995

2000 2005

2010

What is Parallel Computing?

 Parallel computing: using multiple processors in parallel to solve
problems more quickly than with a single processor and/or with less
energy

« Example of a parallel computer

—An 8-core Symmetric Multi-Processor (SMP) consisting of four dual-
core chip microprocessors (CMPs)

RAM

L3 Cache

|
< Front side bus
[[[

L

COMP 322, Spring 2019 (M. Joyner, Z. Budimli¢)

Memory bus controller Memory bus controller Memory bus controller Memory bus controller
CMP-0 CMP-1 CMP-2 CMP-3
L2 cache L2 cache L2 cache L2 cache
L1+ |L1-D| L1+t [L1-D]| L1+ [L1-d] L1+ Jui-p || L1+ [Li-p| L+ [Li-o || Li- | L[L1+ LD
Processor | Processor Processor | Processor Processor | Processor || Processor | Processor Source: Figur‘e 15 Of Lin & Snyder'
PO P P2 P3 P4 Po P6 P7 book, Addison-Wesley, 2009

All Computers are Parallel Computers ---
Why?

aNd>0ID

COMP 322, Spring 2019 (M. Joyner, Z. Budimli¢)

Parallelism Saves Power
(Simplified Analysis)

Nowadays (post Dennard Scaling), Power ~ (Capacitance) * (Voltage) * (Frequency)
and maximum Frequency is capped by Voltage

=>» Power is proportional to (Frequency)’

Baseline example: single 1GHz core with power P

Option A: Increase clock frequency to 2GHz =» Power = 8P

Option B: Use 2 cores at 1 GHz each =» Power = 2P

« Option B delivers same performance as Option A with 4x less power ... provided
software can be decomposed to run in parallel!

8 COMP 322, Spring 2019 (M. Joyner, Z. Budimli¢)

What is Parallel Programming?

« Specification of operations that can

be executed in parallel Task A Task B

» Aparallel program is decomposed
into sequential subhcomputations
called tasks

 Parallel programming constructs
define task creation, termination, and
interaction

Schematic of a dual-core
Processor

>

9 COMP 322, Spring 2019 (M. Joyner, Z. Budimli¢)

Example of a Sequential Program:
Computinag the sum of arrav elements

Algorithm 1: Sequential ArraySum

Computation Graph

X[O]

Input: Array of numbers, X.

Output: sum = sum of elements in array X. 0

sum <— 0;

for 1 < 0 to X.length — 1 do l
L sum <— sum + X [i];

X[1]

return sum;

Observations: X[2]

e The decision to sum up the elements from left /
to right was arbitrary

« The computation graph shows that all
operations must be executed sequentially

10 COMP 322, Spring 2019 (M. Joyner, Z. Budimli¢)

Parallelization Strategy for two cores
(Two-wav Parallel Arrav Sum)

Task O0: Compute sum of Task 1: Compute sum of
lower half of array upper half of array
®

!

Compute total sum

Basic idea:

« Decompose problem into two tasks for partial sums
« Combine results to obtain final answer

 Parallel divide-and-conquer pattern

11 COMP 322, Spring 2019 (M. Joyner, Z. Budimlic)

Async and Finish Statements for Task
Creation and Termination (Pseudocode)

async S finish S

= Execute S, but wait until all
asyncs in S’s scope have
terminated.

Creates a new child task that
executes statement S

// T,(Parent task)
STMTO ;
finish ({ //Begin finish
async {
STMT1; //T,(Child task)
}
STMT2; //Continue in T,
//Wait for T,
} //End finish
STMT3; //Continue in T,

12 COMP 322, Spring 2019 (M. Joyner, Z. Budimli¢) @

13

Two-way Parallel Array Sum
using async & finish constructs

Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
// Start of Task Tl (main program)
suml < 0; sum?2 < 0;
// Compute suml (lower half) and sum2 (upper half) in parallel.
finish{
async{
// Task T2
for i < 0 to X.length/2 — 1 do
L suml < suml + X[i];

b

async{
// Task T3
for i + X.length/2 to X.length — 1 do
L sum2 < sum?2 + X [i];

b
b

// Task T1 waits for Tasks T2 and T3 to complete
// Continuation of Task T1

sum <— suml + sum?2;

return sum;

COMP 322, Spring 2019 (M. Joyner, Z. Budimli¢)

Course Syllabus

« Fundamentals of Parallel Programming taught in three modules

1. Parallelism
2. Concurrency
3. Locality & Distribution

e Each module is subdivided into units, and each unit into topics

 Lecture and lecture handouts will introduce concepts using pseudocode notations

 Labs and programming assignments will be in Java 8

14

—Initially, we will use the Habanero-Java (HJ) library developed at Rice as a pedagogic
parallel programming model

- HJ-lib is a Java 8 library (no special compiler support needed)

- HJ-lib contains many features that are easier to use than standard Java threads/
tasks, and are also being added to future parallel programming models

—Later, we will learn parallel programming using standard Java libraries, and
combinations of Java libs + HJ-lib

COMP 322, Spring 2019 (M. Joyner, Z. Budimli¢) @

Grade Policies

Course Rubric

15

Homework (5) 40% (written + programming components)
-+ Weightage proportional to # weeks for homework

Exams (2) 40% (scheduled midterm + scheduled final)
Labs 10% (labs need to be checked off by Monday)
Quizzes 5% (on-line quizzes on Canvas)

Class Participation 5% (in-class worksheets)

COMP 322, Spring 2019 (M. Joyner, Z. Budimli¢)

16

Next Steps

IMPORTANT:

—Bring your laptop to this week’s lab at 4pm on Thursday (HH
100)

—Watch videos for topics 1.2 & 1.3 for next lecture on Wednesday

HW1 will be assigned on Jan 9th and be due on Jan 23rd.
(Homework is normally due on Wednesdays.)

Each quiz (to be taken online on Canvas) will be due on the Friday
after the unit is covered in class. The first quiz for Unit 1 (topics 1.1
- 1.5) is due by Jan 25.

See course web site for syllabus, work assignments, due dates, ...

http://comp322.rice.edu

COMP 322, Spring 2019 (M. Joyner, Z. Budimli¢)

https://canvas.rice.edu/courses/1844/pages/videos-for-unit-1-task-level-parallelism?module_item_id=44098
http://comp322.rice.edu

OFFICE HOURS

 Regular office hour schedule can be found at
Office Hours link on course web site

Send email to instructors (mjoyner@rice.edu,
zoran@rice.edu) if you need to meet some other
time this week

And remember to post questions on Piazza!

17 COMP 322, Spring 2019 (M. Joyner, Z. Budimli¢)

https://wiki.rice.edu/confluence/display/PARPROG/322OfficeHours
mailto:mjoyner@rice.edu?subject=
mailto:zoran@rice.edu?subject=

