COMP 322: Fundamentals of Parallel Programming

Lecture 12: Barrier Synchronization

Zoran Budimli¢ and Mack Joyner
{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 12 4 February 2019

Solution to Worksheet #11: One-dimensional Iterative Averaging
Example

1) Assuming n=9 and the input array below, perform a “half-iteration” of the iterative averaging
example by only filling in the blanks for odd values of j in the myNew(] array (different from the real
algorithm). Recall that the computation is “myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;”

index, j 0 1 2 3 4) 6 7/ 8 9 10
myVal 0 0 0.2 0 0.4 0 0.6 0 0.8 0 1
myNew 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2) Will the contents of myVal[] and myNew[] change in further iterations?

No, this represents the converged value (equilibrium/fixpoint).

3) Write the formula for the final value of myNewl[i] as a function of i and n. In general, this is the value
that we will get if m (= #iterations in sequential for-iter loop) is large enough.

After a sufficiently large number of iterations, the iterated averaging code will converge with myNewl[i]

=myValli] =i/ (n+1)

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Hello-Goodbye Forall Example (Pseudocode)

forall (0, m - 1, (1) -> {
int sq = i*1; // NOTE: video used lookup(i) instead

System.out.println(“Hello from task with square = “ + sq);
System.out.println(“Goodbye from task with square = “ + sq);
});

Sample output for m = 4:
Hello from task with square =0
Hello from task with square =1
Goodbye from task with square =0
Hello from task with square = 4
Goodbye from task with square = 4
Goodbye from task with square = 1
Hello from task with square =9
Goodbye from task with square =9

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Hello-Goodbye Forall Example (contd)

forall (0, m - 1, (1) -> {
int sq = i*i;

{u

System.out.println(“Hello from task with square = “ + sq);
System.out.println(“Goodbye from task with square = “ + sq);

});

« Question: how can we transform this code so as to ensure that all tasks say hello before any tasks say
goodbye?

« Statements in red below will need to be moved to solve this problem

Hello from task with square =0
Hello from task with square = 1
Goodbye from task with square = 0
Hello from task with square = 4
Goodbye from task with square = 4
Goodbye from task with square = 1
Hello from task with square =9
Goodbye from task with square =9

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Hello-Goodbye Forall Example (contd)

forall (0, m - 1, (1) -> {

int sq = i*i;

System.out.println(“Hello from task with square = “ + sq);
System.out.println(“Goodbye from task with square = “ + sq);
});

Question: how can we transform this code so as to ensure that all tasks say hello before any tasks say goodbye?

Approach 1: Replace the forall loop by two forall loops, one for the hello’s and one for the goodbye’s
— Problem: Need to communicate local sq values from first forall to the second

[y

// APPROACH 1
. forall (0, m - 1, (1) -> {

n

3. int sq = i1*1;

4. System.out.println(“Hello from task with square = “ + sq);
5 });

6. forall (0, m - 1, (1) -> {

7. System.out.println(“Goodbye from task with square = “ + sq);
8. });

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Hello-Goodbye Forall Example (contd)

w

N o o s

Question: how can we transform this code so as to ensure that all tasks say hello before any tasks say
goodbye, without having to change local ?

Approach 2: insert a “barrier” (“next” statement) between the hello’s and goodbye's
// APPROACH 2
forallPhased (0, m - 1, (1) -> {

it sq = 1L]» Phase 0
System.out.println(“Hello from task with square = “ + sq);

next(); // Barrier

System.out.println(“Goodbye from task with square = “ + sq);]‘ Phase 1
})s

next -> each forallPhased iteration waits at barrier until all iterations arrive (previous
phase is completed), after which the next phase can start

— Scope of next is the closest enclosing forallPhased statement

— If a forallPhased iteration terminates before executing “next”, then the other iterations don't wait for it

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Q|

Impact of barrier on scheduling forallPhased iterations

next() = SIG + WAIT

Four
forallPhased
iterations,
each with a
next() barrier

s

next() operation is next

modeled in the wait edges L/,/ \\\)
A A As A4

Computation Graph

g(sj?egssignal and wait % % % %

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

forallPhased API's in HJIlib

http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html

static void forallPhased(int s0, int e0,
edu.rice.hj.api.HjProcedure<java.lang.Integer> body)

static <T> void forallPhased(java.lang.Iterable<T> iterable,
edu.rice.hj.apit.HjProcedure<T> body)

static void next()

« NOTE:

— All forallPhased API’s include an implicit finish at the end (just like a regular
forall)

— Calls to next() are only permitted in forallPhased(), not in forall()

8 COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Observation 1: Scope of synchronization for “next” barrier is its closest
enclosing forallPhased statement

forallPhased (0, m - 1, (1) -> {

println(“Starting forall iteration

T+);
next(); // Acts as barrier for forallPhased-1i
forallPhased (0, n - 1, (j) -> {
println(“Hello from task (“ + 1 + “,” + j + “)");
next(); // Acts as barrier for forallPhased-j
println(“Goodbye from task (“ + 1 + “,” + j + “)");
} // forallPhased-j

next(); // Acts as barrier for forallPhased-1i

Vo o N o O~ w

n

10. println(“Ending forallPhased iteration
11.}); // forallPhased-1i

+ 1);

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Observation 2: If a forall iteration terminates before “next”, then other iterations do not

wait for it
1. forallPhased (0, m - 1, (1) -> {
2 forseq (0, i1, (j) -> {
3 // forall iteration i1 i1s executing phase]
4. System.out.println("(" + 1 + "," + j + ")");
5 next();
6 }); //forseq-j
7. }); //forall-1i

« OQuter forall-i loop has m iterations, 0..m-1
« Inner sequential j loop has i+1 iterations, 0...i
« Line 4 prints (task,phase) = (i, j) before performing a next operation.

- Iteration i = 0 of the forall-i loop prints (0, 0), performs a next, and then terminates. Iteration i = 1 of the forall-i
loop prints (1,0), performs a next, prints (1,1), performs a next, and then terminates. And so on.

10 COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

S|

Barrier Matching for previous example

Iteration i=0 of the forallPhased-i
loop prints (0, 0) in Phase 0,
performs a next, and then ends
Phase 1 by terminating.

Iteration i=1 of the forallPhased-i
loop prints (1,0) in Phase 0,
performs a next, prints (1,1) in
Phase 1, performs a next, and
then ends Phase 2 by
terminating.

And so on until iteration i=8 ends
an empty Phase 8 by terminating

i=0

I
(0,0)

i=1 i=2 i=3

| | |
(1,00 (200 (3,0
| |

|
----- next ----- next ----- next

| | |
1) @21 61

----- next ----- next ----- next
| | |
| (22) (3.2
| | |
end - next ----—- next
| |
| (3.3)
| |
end ----- next
|
|
|
end

i=4

("lr,o)
ot
("ln1)
nex
(4':.,2)

next

|
(4,3)

|
next

|
(44)

i=0...7 are forall iterations
(i,j) = println output

next = barrier operation

end = termination of a forall iteration

---- next -----

i=6

|
(6,0)
next -----
(6,1)
next -----

(6.2)

|
(6,3)

----next -----

----next -----

----next -----

---- next -----

(6,4)
|
(6,5)

(6,6)

end -----

Phase 0

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

Phase 7

Phase 8

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

@

Observation 3: Different forallPhased iterations may perform “next” at different
program points

1. forallPhased (0, m-1, (i) -> {
2 if (1%2==1){// 1 is odd
3 oddPhase®(1);
4 next(); —
5. oddPhasel(1i); — Barriers are not statically
6 } else { // 1 is even scoped — matching barriers may
- evenPhase®(1): come from different program
. ’ points, and may even be in
8 next(); different methods!
9 evenPhasel(1);

10. } // if-else
11. }); // forall
« Barrier operation synchronizes odd-numbered iterations at line 4 with even-numbered iterations in line 8

« One reason why barriers are “less structured” than finish, async, future

12

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Announcements & Reminders

HW?2 is available and due by 11:59pm on Wednesday

Quiz for Unit 2 (topics 2.1 - 2.6) is available on Canvas, and due by 11:59pm
on Monday

No class on Friday (spring recess)
See course web site for all work assignments and due dates

- Use Piazza (public or private posts, as appropriate) for all communications

re. COMP 322

- See Office Hours link on course web site for latest office hours schedule.

13

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Worksheet #12: Forall Loops and Barriers

Name: Net ID:

Draw a “barrier matching” figure similar to slide 11 for the code fragment below.

1.String[] a = { “ab”, “cde”, “f" };
2.. . . 1nt m = a.length;

3. forallPhased (0, m-1, (1) -> {

4 for (int j = 0; j < a[i].length(); j++) {

5 // forallPhased iteration i is executing phase j
6. System.out.printin("(" + 1 + "," + 3 + “)");

7 next();

8. }

9.1});

14

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

BACKUP SLIDES START HERE

15

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

HJ code for One-Dimensional Iterative Averaging using nested for-finish-forasync
structure (Recap)

1. forseq (0, m- 1, (iter) ->{

2. // Compute MyNew as function of input array MyVal

3. finish(() ->{
4, forasync (1, n, (j) ->{ // Create n tasks
5. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
6. }); // forasync
7. })//finish
N
8. tempq Question: How many async tasks does this program create as a
9 function of m and n?
: my y,
10. Y); // fo)
Answer: m*n. Can we do better with chunking?
J

16

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Example: HJ code for One-Dimensional Iterative Averaging with chunked for-finish-
forasync-for structure (Recap)

1. intnc= numWorkerThreads();

2. forseq (0, m-1, (iter) ->{
/l Compute MyNew as function of input array MyVal
finish (() >{

forasync (0, nc - 1, (jj) >{

3
4
5
6. HjRegion1D iterSpace = newRectangularRegion1D(1, n);
7 forseq (getChunk(iterSpace, nc, jj), (j) ->{

8 myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

9

3;
10. }); // forasync

(. . .)
1. y;/finisf Question: How many async tasks does this program create as a
12. temp=my function of m, n, and nc?
_ _/
13. // myNew, :)
" Answer: m*nc. But we can do even better with “forall” loops and
14. »;/1for | “barrier” synchronization.)

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

HJ's forall statement = finish + forasync + barriers

Goal 1 (minor): replace common finish-forasync idiom by forall e.g., replace
finish forasync (point [I,J] : [0:N-1,0:N-1])
for (point[K] : [0:N-1])
ClI][J] += AI][K] * BIK][J];
by
forall (point [I,J] : [0:N-1,0:N-1])
for (point[K] : [0:N-1])
ClI][J] += AlITIK] * BIK][J];

Goal 2 (major): Also support “barrier” synchronization

« Caveat: forall is only supported on the work-sharing runtime because of barrier synchronization

18

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

One-Dimensional lterative Averaging with Barrier Synchronization

double[] gVal=new double[n+2]; double[] gNew=new double[n+2]; gVal[n+l] = 1;
int nc = Runtime.getNumWorkers();
forallPhased (0, nc - 1, (jj) -> { // Chunked forall is now the outermost loop

double[] myVal = gVal; double[] myNew = gNew; // Local copy of myVal/myNew pointers

// Compute MyNew as function of input array MyVal

1.

2

3

4

5. forseq (0, m - 1, (iter) -> {
6

7 forseq (getChunk([l:n],nc,jj), (j) -> { // Iterate within chunk
8

9

myNew[]j] = (myVal[j-1] + myVal[j+1])/2.0;
})i
10. next(); // Barrier before executing next iteration of iter loop
11. // Swap myVal and myNew (each forall iterations swaps its pointers in local vars)
12. double[] temp=myVal; myVal=myNew; myNew=temp;
13. // myNew becomes input array for next iter

14, Y); // for
15. }); // forall

- Use of barrier reduces number of async tasks created to just nc
- However, these nc tasks perform nc*m barrier operations
— Good trade-off since, barrier operations have lower overhead than task creation if number of chunks <= number of workers

19 COMP 322, Spring 2019 (M.Joyner, Z.Budimlic) A

