COMP 322: Fundamentals of Parallel Programming

Lecture 13:; Parallelism in Java Streams, Parallel Prefix Sums

Zoran Budimli¢ and Mack Joyner
{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 13 6 February 2019 @

Worksheet #12: Forall Loops and Barriers

Draw a “barrier matching” figure similar to lecture 12 slide 11 for the code fragment below.

1.

1~

(62}

[e)}

String[] a

. lnt m

for (int j

{

forallPhased (0, m-1,

“ab”, “cde”, “f" };
a.length;
(1) > {
0; j < a[i]l.length(); j++) {

// forall iteration 1 is executing phase]

System.out.println("(" + 1 + "," + j + ")");

next();

});

Solution
i=0 i=1 i=2
I I I
(0,0) (1,0) (2,0)
I I I
next ----- next ----- next
I I I
(0,1) (1,1) I
I I I
next ----- next ----- end
I I
I (1,2)
I I
end ----- next
I
I
I
end

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

How Java Streams addressed pre-Java-8 limitations of Java
Collections

1. Iteration had to be performed explicitly using for/foreach loop, e.g.,
// Iterate through students (collection of Student objects)
for (Student s in students) System.out.println(s);

= Simplified using Streams as follows

students.stream().foreach(s -> System.out.println(s));

2. Overhead of creating intermediate collections
List<Student> activeStudents = new ArrayList<Student>();
for (Student s in students)
i1f (s.getStatus() == Student.ACTIVE) activeStudents.add(s);
for (Student a in activeStudents) totalCredits += a.getCredits();

= Simplified using Streams as follows
totalCredits = students.stream().filter(s -> s.getStatus() == Student.ACTIVE)
.mapTolnt(a -> a.getCredits()).sum();

3. Complexity of parallelism simplified (for example by replacing stream() by parallelStream())

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Java

8 Streams Cheat Sheet

A stream is a pipeline of functions
that can be evaluated.

Streams can transform data.

A stream is not a data structure.

NEE &

Streams cannot mutate data.

Always return streams. Lazily executed.

Common examples include:

Preserves | Preserves | Preserves
count type order

X

Function

distinct

filter X
X

sorted X

peek

Get the unigue surnames in uppercase of the first 15 book
authors that are 50 years old or over.
library.stream()
.map (book -> book.getAuthor())
.filter (author -> author.getAge() >= 50)
.map (Author: :getSurname)
.map (String: : toUpperCase)
.distinct()
.limit(15)
.collect(toList());

Compute the sum of ages of all female authors younger than 25.

library.stream()
.map (Book: :getAuthor)

.filter(a -> a.getGender () == Gender.FEMALE)

.map (Author: :getAge)
.filter (age -> age < 25)
.reduce (0, Integer::sum):

Return concrete types or produce a side effect.

Eagerly executed.

Common examples include:

Function Output When to use
reduce concrete type to cumulate elements
collect list, map or set to group elements
forEach side effect to perform a side effect

on elements

Parallel streams use the common ForkjoinPool for threading.
library.parallelStream() ...

or intermediate operation:
IntStream.range(l, 10).parallel()...

Grouping:
library.stream() .collect(
groupingBy (Book: :getGenre)) ;

Stream ranges:
IntStream.range (0, 20)...

Infinite streams:
IntStream.iterate(0, e -> e + 1)...

Max/Min:
IntStream.range(l, 10).max();

FlatMap:
twitterList.stream()
.map (member -> member.getFollowers())
.flatMap (followers -> followers.stream())
.collect(toList());

Pitfalls

E Don't update shared mutable variables i.e.
List<Book> myList = new ArrayList<>();
library.stream() . forEach

(e -> myList.add(e));

Avoid blocking operations when using
parallel streams.

Source: http://zeroturnaround.com/rebellabs/java-8-streams-cheat-sheet/

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Parallelism in processing Java Streams

Parallelism can be introduced at a stream source ...
— e.g., library.parallelStream()...

... Or as an intermediate operation
— e.g., library.stream().sorted().parallel()...

Stateful intermediate operations should be avoided on parallel streams ...
— e.g., distinct, sorted, user-written lambda with side effects

... but stateless intermediate operations work just fine
— e.g., filter, map

Parallelism is usually more efficient on unordered streams ...

— e.g., stream created from unordered source (HashSet), or from .unordered() intermediate
operation

... and with unordered collectors

— e.g., ConcurrentHashMap

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Beyond Sum/Reduce Operations —
Prefix Sum (Scan) Problem Statement

Given input array A, compute output array X as follows

X[i]=) Alj]

0<;<i

« The above is an inclusive prefix sum since X[i] includes A[il

« For an exclusive prefix sum, perform the summation for 0 <=j <i

« Itis easy to see that inclusive prefix sums can be computed sequentially in O(n) time ...
// Copy input array A into output array X

X = new int[A.length]; System.arraycopy(A,0,X,0,A.length);

// Update array X with prefix sums

for (int 1=1 ; 1 < X.length ; i++) X[1] += X[1-1];

« .. and so can exclusive prefix sums

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

An Inefficient Parallel Algorithm for Exclusive Prefix Sums

—

.forall(0, X.length-1, (1) -> {
// computeSum() adds A[0..1-1]
X[1] = computeSum(A, 0, i1-1);

B whr

Observations:
« Critical path length, CPL = O(log n)
 Total number of operations, WORK = 0O(n2)

« With P = O(n) processors, the best execution time that you can achieve is Tp =
max(CPL, WORK/P) = O(n), which is no better than sequential!

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

How can we do better?

Assume that inputarray A=[3,1,2,0,4,1, 1, 3]
Define scan(A) = exclusive prefix sums of A=10, 3,4, 6, 6,10, 11, 12]

Hint:
« Compute B by adding pairwise elements in A to get B =[4, 2, 5, 4]
« Assume that we can recursively compute scan(B) = [0, 4, 6, 11]

« How can we use A and scan(B) to get scan(A)?

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢) %\é

Another way of looking at the parallel algorithm

Observation: each prefix sum can be decomposed into reusable terms of power-of-2-size e.qg.

X[6] = A[0]+ A[l]+ A[2] + A[3] + A[4] + A[5] + A[6]
= (A[0] + A[1] + A[2] + A[3]) + (A[4] + A[5]) + Al6]

Approach:

Combine reduction tree idea from Parallel Array Sum with partial sum idea from
Sequential Prefix Sum

Use an “upward sweep” to perform parallel reduction, while storing partial sum terms in
tree nodes

Use a “downward sweep” to compute prefix sums while reusing partial sum terms stored
in upward sweep

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Parallel Prefix Sum: Upward Sweep
(while calling scan recursively)

Upward sweep is just like Parallel Reduction, except that partial sums are also
stored along the way

1. Receive values from left and right children

Compute left+right and store in box 1 5
3. Send left+right value to parent 6

9
15

ar: 2/ ~Jo

4 5 4

. 4 2 S 4

3 1 2 0 4 1 1 3

10 COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Parallel Prefix Sum: Downward Sweep
(while returning from recursive calls to scan)

—

Receive value from parent (root receives 0)

2. Send parent’s value to LEFT child (prefix sum for elements to the left of left
child’s subtree)

3. Send parent’s value+ left child’s box value to RIGHT child (prefix sum for
elements to left of right child’s subtree)

4. Add Ali] to get inclusive prefix sum 0 N

Exclusive prefix sums

+ A[i] 3 12 o 4 11 3

Inclusive prefix sums | 3 4 6 6 10 11 12 15

11 COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Summary of Parallel Prefix Sum Algorithm

Critical path length, CPL = O(log n)
Total number of add operations, WORK = O(n)

Optimal algorithm for P = O(n/log n) processors
— Adding more processors does not help

Parallel Prefix Sum has several applications that go beyond computing the
sum of array elements

- Parallel Prefix Sum can be used for any operation that is associative (need
not be commutative)

— In contrast, finish accumulators required the operator to be both
associative and commutative

12 COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Parallel Filter Operation

[Credits: David Walker and Andrew W. Appel (Princeton), Dan Grossman (U. Washington)]

Given an array input, produce an array output containing only elements such that
f(elt) istrue i.e, output =
input.parallelStream().filter(f).toArray()

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
f: 1s elt > 10
output [17, 11, 13, 19, 24]

Parallelizable?
—Finding elements for the output is easy
—But getting them in the right place seems hard

13

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements (can use Java streams)
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector (not available in Java streams)

14

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Parallel prefix to the rescue

1.

2.

Parallel map to compute a bit-vector for true elements (can use Java streams)
tnput [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

Parallel-prefix sum on the bit-vector (not available in Java streams)

bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

Parallel map to produce the output (can use Java streams)

output [17, 11, 13, 19, 24]

14

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Parallel prefix to the rescue

1.

2.

Parallel map to compute a bit-vector for true elements (can use Java streams)
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

Parallel-prefix sum on the bit-vector (not available in Java streams)
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]
Parallel map to produce the output (can use Java streams)
output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]
FORALL (i=0; i < input.length; i++) {
if(bits[i]==1)
output[bitsum[i]-1] = input[i];

14

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Announcements & Reminders

HW?2 is available and due today by 11:59pm

HW3 will be available today and due March 20th (two intermediate
checkpoints!)

Quiz for Unit 2 (topics 2.1 - 2.6) is available on Canvas, and due by 11:59pm
on Monday

Watch the topic 3.5, 3.6 videos for the next lecture

- Use Piazza (public or private posts, as appropriate) for all communications

re. COMP 322

- See Office Hours link on course web site for latest office hours schedule.

15

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Worksheet #13:
Parallelism in Java Streams, Parallel Prefix Sums

Name; Netid:

1. What output will the following Java Streams code print?

2. Which stream operation in this example could benefit from a parallel prefix sum implementation, and why?
(Assume a larger array when answering this question, so that overheads of parallelism are not an issue.)

Arrays
.asList(“al", "a2", "b1", "c2", "ci")
.parallelStream()
filter(s -> s.startsWith(“c"))
.sorted()
.map(String: :toUpperCase)
.forEach(System.out::println);

NOUu bk WN -

16 COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

