
COMP 322: Fundamentals of Parallel Programming

Lecture 15: Data-Driven Tasks

Zoran Budimlić and Mack Joyner
{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 15 13 February 2019

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Answer the questions in the table below for the versions of the Iterative Averaging code shown in slides 7, 8, 10,
12. Write in your answers as functions of m, n, and nc.

Worksheet #14 Solution: Iterative Averaging Revisited

�2

Slide 7 Slide 8 Slide 10 Slide 12

How many tasks are
created (excluding the
main program task)?

m*n
n
Incorrect:
n * m

m*nc
Incorrect:
n * nc

nc
Incorrect:
n*m, m*nc

How many barrier
operations (calls to
next per task) are
performed?

0
Incorrect:
m

m
Incorrect:
m*n

0
Incorrect:
m

m
Incorrect:
m*nc, nc

The SPMD version on slide 12 is the most efficient because it only creates nc tasks
(assuming task creation is more expensive than a barrier operation.)

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Dataflow Computing
• Original idea: replace machine instructions by a small set of dataflow operators

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

⇒

�3

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

x = a + b;
y = b * 7;
z = (x-y) * (x+y);

7
a b

x y
1 2

3 4

5An operator executes when all its input
values are present; copies of the result value
are distributed to the destination operators.

No separate branch instructions

Example instruction sequence and its dataflow graph

�4

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Macro-Dataflow Programming
• “Macro-dataflow” = expansion of the
dataflow model from instruction-level to
task-level operations
• General idea: build an arbitrary task
graph, but restrict all inter-task
communications to single-assignment
variables (similar to futures)

• Static dataflow ==> graph fixed when
program execution starts
• Dynamic dataflow ==> graph can grow
dynamically

• Semantic guarantees: race-freedom,
determinism

• “Deadlocks” are possible due to
unavailable inputs (but they are
deterministic)Communication via “single-assignment” variables

�5

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Extending HJ Futures for Macro-Dataflow: 
Data-Driven Futures (DDFs)

HjDataDrivenFuture<T1> ddfA = newDataDrivenFuture();

• Allocate an instance of a data-driven-future object (container)

• Object in container must be of type T1, and can only be assigned once via put()
operations

• HjDataDrivenFuture extends the HjFuture interface

ddfA.put(V) ;

• Store object V (of type T1) in ddfA, thereby making ddfA available

• Single-assignment rule: at most one put is permitted on a given DDF

�6

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Extending HJ Futures for Macro-Dataflow: 
Data-Driven Tasks (DDTs)

asyncAwait(ddfA, ddfB, …, () -> Stmt);

• Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, … become
available (i.e., after task becomes “enabled”)

• Await clause can be used to implement “nodes” and “edges” in a computation graph

ddfA.get()

• Return value (of type T1) stored in ddfA

• Throws an exception if put() has not been performed

— Should be performed by async’s that contain ddfA in their await clause, or if there’s
some other synchronization to guarantee that the put() was performed

�7

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

1. finish(() -> {

2. HjDataDrivenFuture<Void> ddfA = newDataDrivenFuture();

3. HjDataDrivenFuture<Void> ddfB = newDataDrivenFuture();

4. HjDataDrivenFuture<Void> ddfC = newDataDrivenFuture();

5. HjDataDrivenFuture<Void> ddfD = newDataDrivenFuture();

6. HjDataDrivenFuture<Void> ddfE = newDataDrivenFuture();

7. asyncAwait(ddfA, () -> { ... ; ddfB.put(…); }); // Task B

8. asyncAwait(ddfA, () -> { ... ; ddfC.put(…); }); // Task C

9. asyncAwait(ddfB, ddfC, ()->{ ... ; ddfD.put(…); }); // Task D

10. asyncAwait(ddfC, () -> { ... ; ddfE.put(…); }); // Task E

11. asyncAwait(ddfD, ddfE, () -> { ... }); // Task F

12. // Note that creating a “producer” task after its “consumer”

13. // task is permitted with DDFs & DDTs, but not with futures

14. async(() -> { ... ; ddfA.put(…); }); // Task A

15. }); // finish

Converting previous Future example to
Data-Driven Futures and AsyncAwait Tasks

�8

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Differences between Futures and DDFs/DDTs

• Consumer task blocks on get() for each future that it reads, whereas async-await
does not start execution till all DDFs are available

• Future tasks cannot deadlock, but it is possible for a DDT to block indefinitely
(“deadlock”) if one of its input DDFs never becomes available

• DDTs and DDFs are more general than futures
— Future task can only write to a single future object, whereas a DDT can write to

multiple DDF objects
— The choice of which future object to write to is tied to a future task at creation time,

where as the choice of output DDF can be deferred to any point with a DDT
— Consumer DDTs can be created before the producer DDTs

• DDTs and DDFs can be implemented more efficiently than futures
— An “asyncAwait” statement does not block the worker, unlike a future.get()

�9

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Two Exception (error) cases for DDFs that cannot occur with futures

• Case 1: If two put’s are attempted on the same DDF, an exception is thrown because
of the violation of the single-assignment rule

— There can be at most one value provided for a future object (since it comes from the
producer task’s return statement)

• Case 2: If a get is attempted by a task on a DDF that was not in the task’s await list,
and a put on that DDF hasn’t happened yet, then an exception is thrown because
DDF’s do not support blocking gets

— Futures support blocking gets

�10

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

What is Deadlock?
• A parallel program execution contains a deadlock if some task’s execution remains incomplete due to

it being blocked indefinitely awaiting some condition

• Example of a program with a deadlocking execution

 DataDrivenFuture left = new DataDrivenFuture();

 DataDrivenFuture right = new DataDrivenFuture();

 finish {

 async await (left) right.put(rightBuilder()); // Task1

 async await (right) left.put(leftBuilder()); // Task2

 }

• In this case, Task1 and Task2 are in a deadlock cycle.

• HJ-Lib has a deadlock detection debug option, which can be enabled as follows:

• System.setProperty(HjSystemProperty.trackDeadlocks.propertyKey(), “true”);

• Throws an edu.rice.hj.runtime.util.DeadlockException when deadlock detected

�11 Deadlock cannot happen when using only finish-async, futures or barriers!

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Implementing Future Tasks using DDFs

• Future version
1. final HjFuture<T> f = future(() -> { return g(); });
2. S1

3. async(() -> {
4. ... = f.get(); // blocks if needed

5. S2;
6. S3;

7. });

• DDF version
1. HjDataDrivenFuture<T> f = newDataDrivenFuture();
2. async(() -> { f.put(g()) });

3. S1
4. asyncAwait(f, () -> {

5. ... = f.get(); // does not block —- why?
6. S2;

7. S3;

8. });

�12

