COMP 322: Fundamentals of Parallel Programming

Lecture 18: Abstract vs Real Performance - An
“under the hood” look at HJlib

Mack Joyner and Zoran Budimli¢
{mjoyner, zoran}@rice.edu

http:/comp322.rice.edu

COMP 322 Lecture 18
February 2019

http://comp322.rice.edu

HJ-lib Compilation and Execution

Environment

Java 8 IDE . ,

Foo.java HJ-lib source program is a standard Java 8 program
javac Foo.java Java compiler Java compiler translates Foo.java to Foo.class, along

with calls to HJ-lib with lambda parameters (async,
j finish, future, etc)
Foo.class
All the "magic” happens here!

java Foo l

HJ-lib Runtime Environment =

: : me initializes m worker threads
Java Rﬁg{;%elgﬁgzoegmw (value of m depends on options or default value)

' | HJ Abstract Performance Metrics,
HJ-lib Program Output HJ-Viz output

all enabled by appropriate options

2 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢) @

Looking under the hood — let’s start
with the hardware

IntegratediMembry Controller+3iCh DDR3! £ | Integrated:Membry Controlier-13:Ch DDR3:

Core 0. Core 1 Core2 - Core3 - Core 0. Core 1 Core2 - Core3

Shared L3 Czche Shared L3 Cache

\ / \ /

\/ \/
Main Memory (DRAM)

3 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢) @

Next, how does a process run on a single
core?

Processes are managed by OS kernel

+« Important: the kernel is not a separate process,
but rather runs as part of some user process

Control flow passes from one process to
another via a context switch

Process A

l user code

kernel code }

context switch

............................

Context switches between two processes can be very expensive!

Source: COMP 321 lecture on Exceptional Control Flow (Alan Cox)

4 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢) @

What happens when executing a Java
program?

« A Java program executes in a A
single Java Virtual Machine (JVM) @
process with multiple threads

~| shared code, data

« Threads associated with a single
and process context

process can share the same data

 Java main program starts with a
single thread (T1), but can create
additional threads (T2, T3, T4,T5) ~— -~~~ -~~~ ~~~="~—~""~-~7=7°7 ’

- Java application with five threads —-
via library calls T1, T2, T3, T4, T5 — all of which can
access a common set of shared objects

 Java threads may execute
concurrently on different cores, or

may be context-switched on the Figure source: COMP 321 lecture on
same core Concurrency (Alan Cox)

COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

Thread-level Context Switching on the same
processor core

Thread1 1 Thread 2

} thread context switch

} thread context switch

- Thread context switch'is cheaper than a process context switch,
but is still expensive (just not “very” expensive!)

[t would be ideal to just execute one thread per core (or hardware
thread context) to avoid context switches

Figure source: COMP 321 lecture on Concurrency (Alan Cox)

6 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

Now, what happens In a task-parallel Java
program (e.g., HJ-lib, Java ForkdJoin, etc)

HJ-Lib Tasks &
Continuations

Worker threads

Operating
ystem

Hardware cores

Logical Work Queue

Ready (async's & continuations) Local variables are

private to each task

Tasks

|
push NN pull
work work

~)))
(- (

Workers w, W, W, W,

Static & instance fields are shared among tasks

e HJ-lib runtime creates a small number of worker threads, typically

one per core

e Workers push new tasks and “continuations” into a logical work

queue

e Workers pull task/continuation work items from logical work queue
when they are idle (remember greedy scheduling?)

COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

R

Task-Parallel Model: Checkout Counter Analog

The & going to
be a great day.
[N P [S |

-

- Think of each checkout counter as a processor core

Image sources: http://www.deviantart.com/art/Randomness-20-178737664,
http://www.wholef market.com/blog/whole-story/new-haight-ash -stor

—
R 05
8 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢) '

http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

Task-Parallel Model: Checkout Counter Analogy

Leet Tuesday 30 secondk later

- Think of each checkout counter as a processor core
« And of customers as tasks

Source: httg://www.deviantart.com/art/Randomness-20-1 78737664 2
9 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢) A

All iIs well until a task blocks ...

Now playing: Smooth Jazz [Needle scratches, music stops)

| need to wait until my wife
gets here to checkout.

w : Honey, | got the
Uh, yes you do. sir. remaining items.

. % ,

. .

- A blocked task/customer can hold up the entire line

- What happens if each checkout counter has a blocked
customer?

source: http://viper-x27.deviantart.com/art/Checkout-Lane-Guest-Comic-161795346

10 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

Approach 1: Create more worker threads
(as in HJ-Lib’s Blocking Runtime)

N

N
When is this line going to
move?!

Excuse me sonny...
Are you going to open
another regster soon?

Suuuure...
Just give asecondso |
can duplicate myselfl

Creating too many worker threads can exhaust system
resources (OutOfMemoryError), and also leads to context-
switch overheads when blocked worker threads get unblocked

source: httE://www.deviantart.com/art/Randomness-5-90424754 2

11 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢) @

12

Blocking Runtime (contd)

Logical Work Queue

Ready (async's & continuations) Local variables are
private to each task

Tasks
B To avoid
P [[—— PUl /" deadlock, a blocked
\ > > > worker (e.g., w4) creates
/ a new worker thread,
next() barrier operation ((((w5
Workers w, W, W, W,

Static & instance fields are shared among tasks

Assume that five tasks (A1 ... A5) are registered on a barrier

Q: What happens if four tasks (say, A1 ... A4) executing on workers
w1 ... w4 all block at the same barrier?

A: Deadlock! (All four tasks will wait for task A5 to enter the barrier.)

Blocking Runtime’s solution to avoid deadlock: keep task blocked
on worker thread, and create a new worker thread when task block

COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

Blocking Runtime (contd)

« Examples of blocking operations
— End of finish
— Future get

— Barrier next

« Approach: Block underlying worker thread when task performs a
blocking operation, and launch an additional worker thread

« Too many blocking operations can result in exceptions and/or
poor performance, e.g.,

— java.lang.IllegalStateException: Error in
executing blocked code! [89 blocked threads]

— Maximum number of worker threads can be configured if needed

— HjSystemProperty.maxThreads.set (100);

13 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

Approach 2: Suspend task continuations at blocking
points (as in HJ-Lib's Cooperative Runtime)

Ready [1]

Queue 3 - - Suspended

Queue
Executing
Task —>

« Upon a blocking operation, the currently executing tasks
suspends itself and yields control back to the worker

« Task’s continuation is stored in the suspended queue and added
back into the ready queue when it is unblocked

- Pro: No overhead of creating additional worker threads
- Con: Need to create continuations (enabled by -javaagent option)

Cooperative Scheduling: http://en.wikipedia.org/wiki/Computer multitasking#Cooperative multitaskin

14 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

Continuations

« A continuation is the point immediately following a blocking operation,
such as an end-finish, future get(), barrier/phaser next(), etc.
« Continuations are also referred to as task-switching points

— Program points at which a worker may switch execution between
different tasks (depends on scheduling policy)

1finish { // F1
2. async A1;
3. finish {// F2
async A3;

o s

async A4;

o

} <

7. S5; — Continuations
8.}€ —

15 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

Cooperative Scheduling

view from a single worker

time (increases downwards)

Task-1

black

unblock

Task-1

>
P

suspend

| resume

AN

block

Cooperative runtime
automatically creates C
continuations at suspend)
points via bytecode
instrumentation enabled
by -javaagent option

suspend

Task-2

/ Useful work\

for some
other task on
same worker
thread

S suspend/complete

16

COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

HJ-lib’s Cooperative Runtime (contd)

Suspended Tasks
registered with “Event-Driven

Ready/Resumed Task Queues

Controls (EDCs)” { -
task [{ - } [task
task |~ [task task
task task A [{ task }

22...2
N N ™~
22 ¢ Eec Epc EDG

Worker Threads Synchronization objects
that use EDCs

Any operation that contributes to unblocking a task can be viewed as an event e.g., task termination
in finish, return from a future, signal on barrier, put on a data-driven-future, ...

17 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

Why are Data-Driven Tasks (DDTs)
more efficient than Futures?

« Consumer task blocks on get() for each future that it reads,
whereas async-await does not start execution till all Data-
Driven Futures (DDFs) are available

— An “asyncAwait” statement does not block the worker,
unlike a future.get()

—No need to create a continuation for asyncAwait; a data-
driven task is directly placed on the Suspended queue by
default

 Therefore, DDTs can be executed on a Blocking Runtime
without the need to create additional worker threads, or on a
Cooperative Runtime without the need to create
continuations

18 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

Summary: Abstract vs. Real
Performance in HJlib

« Abstract Performance
—Abstract metrics focus on operation counts for WORK and CPL, regardless of
actual execution time
« Real Performance
—HJlib uses ForkJoinPool implementation of Java Executor interface with
Blocking or Cooperative Runtime (option-controlled)

Ready/Resumed Task Blocked Tasks waiting on
Queues synchronization objects
(e.g. end-finish, future.get(), etc.)
task o task
task task
_sync-obj _sync-obj
Running
Worker Threads
(at most one ready task Blocked
Worker Threads

running on a worker thread)

19 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢) @

Announcements & Reminders

« HW3 CP 1 is available and due today by 11:59pm
« Watch the topic 4.1, 4.4 videos for the next lecture

- Use Piazza (public or private posts, as appropriate) for all
communications re. COMP 322

- See Office Hours link on course web site for latest office hours
schedule.

20 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

https://wiki.rice.edu/confluence/display/PARPROG/322OfficeHours

21

Computation graph for async-finish
proaram in Worksheet 18

\/_ 10

COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

