COMP 322: Fundamentals of Parallel Programming

Lecture 19: Pipeline Parallelism, Signal Statement, Fuzzy Barriers

Zoran Budimli¢ and Mack Joyner
{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 19 25 February 2019 @

Worksheet #18: Cooperative vs Blocking Runtime scheduler

Assume that creating an async causes the task to be pushed into the 10. finish {
work queue for execution by any available idle thread. 1. async { S1; }
Fill the following table for the program shown on the right by adding the 12. finish {
appropriate number of threads required to execute the program. For the B as}”_m _ {h
minimum or maximum numbers, your answer must represent a 1 this {{ 52: 3
schedule where at some point during the execution all threads are busy 1‘2 2;{’“ ;
executing a task or blocked on some synchronization constraint. .) ’
18. S4;
19. +
20. async {
Minimum number [Maximum number .
of threads of threads 2 async { S5; }
22. S6;
23. +
: . S7;
Cooperative 2 ’
Runtime W 1 ? 25. }
26. S8;
27. }
Blocking Runtime |? ?

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Worksheet #18: Cooperative vs Blocking Runtime scheduler

10. finish {
11. async { S1; }
12. finish {

13. async {

14. finish {

15. async { S2; }
16. S3;

17. }

18. S4;

19. +

20. async {

21. async { S5; }
22. S6;

23. }

24. S7;

25. }

26. S8;

27. }

Maximum threads: If we proceed through the graph in

top-down manner incrementally, how many
maximum leaf nodes can we have?

Maximum
number of
threads

Cooperative 6

Runtime

Blockin

Run’cimtgaJ 6
Minimum
number of
threads

Cooperative 1

Runtime

Blockin

Rumtime ?

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

S|

Worksheet #18: Cooperative vs B

ocking Runtime scheduler

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

finish {
async { S1; }
finish {
async {
finish {
async { S2; }
S3;

S4;

}

async {
async { S5; }
S6;

” Logical | T1 T2 T3
wor time
pool
. 0 10
13120 1 12 11
1 2 24 13 20
21115 3 25 14 22
21115 4 25 16 23
15 5 25 | 17 21
6 25 17 15
7 25 17
8 25 18
9 25 19
10 26
11 27
13
| Minimum
number of
threads
Blockin
RuntimgJ 3

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

@

Medical imaging pipeline

New reconstruction methods
— decrease radiation exposure (CT)
— number of samples (MR)

3D/4D image analysis pipeline
— Denoising
— Registration
— Segmentation

Analysis

reconstruction

o
=
.0
o
C
)
©

— Real-time quantitative cancer S
assessment applications IS
Potential: g
— order-of-magnitude performance
Improvement

— power efficiency improvements

— real-time clinical applications and
simulations using patient imaging data

segmentation

Slide credit: NSF Expeditions Center for Domain-Specific Computing (UCLA, Rice, OSU, UCSB)

Pipeline Parallelism: Another Example of Point-to-point
Synchronization

DENOISE

\ 4

REGISTER > SEGMENT

« Medical imaging pipeline with three stages
1. Denoising stage generates a sequence of results, one per image.
2. Registration stage’s input is Denoising stage’s output.
3. Segmentation stage’s input is Registration stage’s output.

« Even though the processing is sequential for a single image, pipeline

parallelism can be exploited via point-to-point synchronization between
neighboring stages

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

General structure of a One-Dimensional Pipeline

Input sequence

d9d8d7d6d5d4d3d2d1d0 > PO > Pl > P2 > P3 > P4 > P5 > P6 > P7 > PS |* P9

« Assuming that the inputs dy, d;, . . . arrive sequentially, pipeline parallelism can
be exploited by enabling task (stage) P; to work on item dy-; when task (stage)
Py is working on item d,.

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Timing Diagram for One-Dimensional Pipeline

p-1 n

- >4 >

A Py dy | dy | dy | d3 | dg | d5 | dg
— /
2 Pg do | dy | dy | d3 | dg| ds | dg | dy
I Point-to-point o
8 Py synchronization do”| dy | dy | d3 | dy | ds5 | dg | d7 | dg
~ across stages 7
@ Pg ;10 dy | dy | d3 | dy | ds | dg | dj|dg|dg

7
g Ps dy | dy | dy | d3 | dy| ds | dg| dy|dg|dg
-
3 Py dy | dy | dy | d3 | dy| ds | dg| dy|dg|dg
= Py dy | dy | dy | d3 | dy|ds|dg | dy|dg|dg
o
Q Py dy | dy | dy | d3 | dy| ds | dg| dy|dg|dg
Q
P dy | dy | dy | d3 | dy | ds | dg| dy|dg|dg :

o ! n data items

v Py do | dy | dy | d3 | dg | ds | dg | d7|dg|dg

Time

Horizontal axis shows progress of time from left to right, and vertical axis shows which
data item is being processed by which pipeline stage at a given time.

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Complexity Analysis of One-Dimensional Pipeline

Assume
—n = number of items in input sequence
— p = number of pipeline stages
— each stage takes 1 unit of time to process a single data item

WORK = nxp is the total work for all data items
CPL =n+ p - 1 is the critical path length of the pipeline
|deal parallelism, PAR = WORK/CPL =np/(n+p - 1)
Boundary cases
—p=1->PAR=n/(n+1-1)=1
—n=1->PAR=p/(1T+p—-1)=1
—n=p->PAR=p/(2-1/p) = p/2
—n>»>p->PAR=p

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Using a phaser to implement pipeline parallelism
(unbounded buffer)

1. asyncPhased(ph.inMode(SIG), () -> {

2 for (int 1 = 0; 1 < rounds; i++) {
3 buffer.insert(..);

4 // producer can go ahead as they are in SIG mode
5. next();

6 }

7. 1)

8

9. asyncPhased(ph.inMode(WAIT), () -> {
10. for (int 1 = 0; 1 < rounds; i1++) {
11. next();

12. buffer.remove(..);

13. }

14. });

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Signal statement & Fuzzy barriers

* When a task T performs a signal operation, it notifies all the phasers it is registered on that it has
completed all the work expected by other tasks (“shared” work) in the current phase.

» Later, when T performs a next operation, the next degenerates to a wait since a signal has already
been performed in the current phase.

* The execution of “local work” between signal and next is overlapped with the phase transition
(referred to as a “split-phase barrier” or “fuzzy barrier”)
signal next
(i=0) (i=1)

=1

next next

(i=0) (i=1)

. forall (point[i] : [0:1]) {
A(l); // Phase 0

if (i==0) { signal; B(i); }
next; // Barrier

C(i); // Phase 1

if (i==1) { D(1); }

N O o B WN -

11

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Another Example of a Split-Phase Barrier using the Signal

Statement
1. finish(() -> {
2 final HjPhaser ph = newPhaser(SIG_WAIT);
3 asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T1
4. a=...3 // Shared work in phase 0
5. signal(); // Signal completion of a's computation
6. b= ... // Local work in phase 0
7 next(); // Barrier -- wait for T2 to compute x
8. b = f(b,x); // Use x computed by T2 in phase 0
9. });
10. agyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T2
11. X = ..o, // Shared work in phase 0
12. signal(); // Signal completion of x's computation
13. Yy = ... // Local work in phase 0
14. next(); // Barrier -- wait for Tl to compute a
15. y = f(y,a); // Use a computed by Tl in phase 0
16. 1});

17.}); // finish

12

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

S|

Computation Graph for Split-Phase Barrier Example
(without async-finish nodes and edges)

4 » S-signal » 6 y 7-wait 8
\ 4
:i .
ph.next | ph.next
-start(0->1) -end(0->1)
A
/
II
I,
! q
11 » 12-signal 13 " 14-wait » 15
spawn continue signal wait join
ﬁ e e — > 0 s > —-----4 >

13

COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

Full Computation Graph for Split-Phase Barrier Example
2 S ————— 17-drop 17-end-finish
\ 4 \\ » S-signal » 6 y 7-wait y 8
\\\ X —, ','
. |
“~a| ph.next | ph.next
-start(0->1) | -end(0->1) /
Ill "3;" III
11 » 12-signal 13 " 14-wait » 15
spawn continue signal wait join
—> B — D> e 3> S U >
COMP 322, Spring 2019 (M.Joyner, Z.Budimli¢)

14

