
COMP 322: Fundamentals of Parallel Programming

Lecture 25: Java synchronized statement (cont)

Zoran Budimlić and Mack Joyner
{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 24 9 March 2018

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

One possible solution to Worksheet #24

1) Write a sketch of the pseudocode for a Java threads program that exhibits a data race using start()
and join() operations.

1. // Start of thread t0 (main program)
2. sum1 = 0; sum2 = 0; // Assume that sum1 & sum2 are fields
3. // Compute sum1 (lower half) and sum2 (upper half) in parallel
4. final int len = X.length;
5. Thread t1 = new Thread(() -> {
6. for(int i=0 ; i < len/2 ; i++) sum1+=X[i];});
7. t1.start();
8. Thread t2 = new Thread(() -> {
9. for(int i=len/2 ; i < len ; i++) sum2+=X[i];});
10. t2.start();
11. int sum = sum1 + sum2; //data race between t0 & t1, and t0 & t2
12. t1.join(); t2.join();

�2

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

One possible solution to Worksheet #24 (contd)

2) Write a sketch of the pseudocode for a Java threads program that exhibits a data race using
synchronized statements.

1. // Start of thread t0 (main program)
2. sum = 0; // static int field
3. Object a = new ... ;
4. Object b = new ... ;
5. Thread t1 = new Thread(() ->
6. { synchronized(a) { sum++; } });
7. Thread t2 = new Thread(() ->
8. { synchronized(b) { sum++; } });
9. t1.start();
10. t2.start(); // data race between t1 & t2
11. t1.join(); t2.join();

�3

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Monitors

• One definition of monitor is a thread-safe class, object, or module that uses
wrapped mutual exclusion in order to safely allow access to a method or
variable by more than one thread. The defining characteristic of a monitor is
that its methods are executed with mutual exclusion: At each point in time, at
most one thread may be executing any of its methods. Using a condition
variable(s), it can also provide the ability for threads to wait on a certain
condition (thus using the above definition of a "monitor"). For the rest of this
article, this sense of "monitor" will be referred to as a "thread-safe object/
class/module”.

• Source: https://en.wikipedia.org/wiki/Monitor_(synchronization)

�4

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Implementation of Java synchronized statements/methods

• Every object has an associated lock

• “synchronized” is translated to matching monitorenter and monitorexit
bytecode instructions for the Java virtual machine

— monitorenter requests “ownership” of the object’s lock
— monitorexit releases “ownership” of the object’s lock

• If a thread performing monitorenter does not gain ownership of the lock
(because another thread already owns it), it is placed in an unordered “entry
set” for the object’s lock

�5

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

What if you want to wait for shared state to satisfy a desired
property? (Circular Bounded Buffer Example)

1. public synchronized void insert(Object item) { // producer
2. // TODO: wait till count < BUFFER SIZE
3. ++count;
4. buffer[in] = item;
5. in = (in + 1) % BUFFER SIZE;
6. // TODO: notify consumers
7. }
8.
9. public synchronized Object remove() { // consumer
10. Object item;
11. // TODO: wait till count > 0
12. --count;
13. item = buffer[out];
14. out = (out + 1) % BUFFER SIZE;
15. // TODO: notify producers
16. return item;
17.}

�6

01
2

3

count=4
out=0
in=4

4

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

The Java wait() Method

• A thread can perform a wait() method on an object that it owns:
1. the thread releases the object lock
2. thread state is set to blocked
3. thread is placed in the wait set

• Causes thread to wait until another thread invokes the notify() method or the notifyAll() method for
this object.

• Since interrupts and spurious wake-ups are possible, this method should always be used in a loop
e.g.,

 synchronized (obj) {
 while (<condition does not hold>)
 obj.wait();
 ... // Perform action appropriate to condition
 }

• Java’s wait-notify is related to “condition variables” in POSIX threads

�7

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Figure source: http://www.artima.com/insidejvm/ed2/images/fig20-1.gif

Monitors – a Diagrammatic summary

�8

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Entry and Wait Sets

�9

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

The notify() Method

When a thread calls notify(), the following occurs:
1. selects an arbitrary thread T from the wait set
2. moves T to the entry set
3. sets T to Runnable

T can now compete for the object’s lock again

�10

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Multiple Notifications

• notify() selects an arbitrary thread from the wait set.

—This may not be the thread that you want to be selected.

—Java does not allow you to specify the thread to be selected

• notifyAll() removes ALL threads from the wait set and places them in the entry set. This
allows the threads to decide among themselves who should proceed next.

• notifyAll() is a conservative strategy that works best when multiple threads may be in
the wait set

�11

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

insert() & remove() with wait/notify methods for Circular
Bounded Buffer

1. public synchronized void insert(Object item) {
2. while (count == BUFFER SIZE) wait();
3. ++count;
4. buffer[in] = item;
5. in = (in + 1) % BUFFER SIZE;
6. notify();
7. }
8.
9. public synchronized Object remove() {
10. Object item;
11. while (count == 0) wait();
12. --count;
13. item = buffer[out];
14. out = (out + 1) % BUFFER SIZE;
15. notify();
16. return item;
17.}

�12

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Complete Bounded Buffer class
using Java Synchronization

1. public class BoundedBuffer extends Buffer
2. {
3. private static final int BUFFER SIZE = 5;
4. private int count, in, out;
5. private Object[] buffer;
6. public BoundedBuffer() { // create empty buffer
7. count = 0; in = 0; out = 0;
8. buffer = new Object[BUFFER SIZE];
9. }
10. public synchronized void insert(Object item) {
11. // See previous slide
12. }
13. public synchronized Object remove() {
14. // See previous slide
15. }
16.}

�13

