
COMP 322: Fundamentals of Parallel Programming

Lecture 26: Java Locks, Linearizability

Mack Joyner and Zoran Budimlić
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 26
March 2019

http://comp322.rice.edu

Worksheet #25 solution:
Bounded Buffer Example

Consider the case when multiple threads call insert() and remove() methods
concurrently for a single BoundedBuffer instance with SIZE >= 1.

NOTE: the BoundedBuffer instance is the object used by the synchronized
statements, not the objects being inserted/removed.

1) Can you provide an example in which the wait set includes a thread waiting at
line 2 in insert() and a thread waiting at line 11 in remove(), in slide 12? If not, why
not?

Yes, if notified threads in the wait set don’t have higher priority over threads in the
entry set

2) How would the code behave if all wait/notify calls (lines 2, 6, 11, 15) were
removed from the insert() and remove() methods in slide 12?

insert() may overwrite existing elements when buffer is supposed to be full

remove() may return undefined values when buffer is supposed to be empty

2 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Unit 7.3: Locks

Example of hand-over-hand locking:
• L1.lock() … L2.lock() … L1.unlock() … L3.lock() … L2.unlock() ….

3 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

java.util.concurrent.locks.Lock interface
1. interface Lock {

2. // key methods

3. void lock(); // acquire lock

4. void unlock(); // release lock

5. boolean tryLock();

6. // Either acquire lock and return true, or return false if lock is

7. /// not obtained. A call to tryLock() never blocks!

8. Condition newCondition(); // associate a new condition

9. // variable with the lock 

}

• java.util.concurrent.locks.Lock interface is implemented by
java.util.concurrent.locks.ReentrantLock class

4 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

==> Importance of including call to unlock() in finally clause!

Simple ReentrantLock() example

5 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

java.util.concurrent.locks.condition interface

• Can be allocated by calling ReentrantLock.newCondition()

• Supports multiple condition variables per lock

• Methods supported by an instance of condition
— void await() // NOTE: like wait() in synchronized statement

– Causes current thread to wait until it is signaled or interrupted
– Variants available with support for interruption and timeout

— void signal() // NOTE: like notify() in synchronized statement
– Wakes up one thread waiting on this condition

— void signalAll() // NOTE: like notifyAll() in synchronized statement
– Wakes up all threads waiting on this condition

• For additional details see
— http://download.oracle.com/javase/1.5.0/docs/api/java/util/

concurrent/locks/Condition.html

6 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Condition.html

BoundedBuffer example using two
conditions, notFull and notEmpty

1. class BoundedBuffer {
2. final Lock lock = new ReentrantLock();
3. final Condition notFull = lock.newCondition();
4. final Condition notEmpty = lock.newCondition();
5.
6. final Object[] items = new Object[100];
7. int putptr, takeptr, count;
8.
9. . . .

7 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

BoundedBuffer example using two
conditions, notFull and notEmpty (contd)

10. public void put(Object x) throws InterruptedException
11. {
12. lock.lock();
13. try {
14. while (count == items.length) notFull.await();
15. items[putptr] = x;
16. if (++putptr == items.length) putptr = 0;
17. ++count;
18. notEmpty.signal();
19. } finally {
20. lock.unlock();
21. }
22. }

8 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

BoundedBuffer example using two
conditions, notFull and notEmpty (contd)

23. public Object take() throws InterruptedException
24. {
25. lock.lock();
26. try {
27. while (count == 0) notEmpty.await();
28. Object x = items[takeptr];
29. if (++takeptr == items.length) takeptr = 0;
30. --count;
31. notFull.signal();
32. return x;
33. } finally {
34. lock.unlock();
35. }
36. }

9 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Reading vs. writing
• Recall that the use of synchronization is to protect interfering accesses

— Concurrent reads of same memory: Not a problem
— Concurrent writes of same memory: Problem
— Concurrent read & write of same memory: Problem

So far:
— If concurrent write/write or read/write might occur, use synchronization to ensure

one-thread-at-a-time
But:

— This is unnecessarily conservative: we could still allow multiple simultaneous
readers (as in object-based isolation)

Consider a hashtable with one coarse-grained lock
— Only one thread can perform operations at a time

But suppose:
— There are many simultaneous lookup operations and insert operations are

rare

10 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

java.util.concurrent.locks.ReadWriteLock
interface

 interface ReadWriteLock {  
 Lock readLock();  
 Lock writeLock();

 }
• Even though the interface appears to just define a pair of locks, the

semantics of the pair of locks is coupled as follows
— Case 1: a thread has successfully acquired writeLock().lock()

– No other thread can acquire readLock() or writeLock()
— Case 2: no thread has acquired writeLock().lock()

– Multiple threads can acquire readLock()
– No other thread can acquire writeLock()

• java.util.concurrent.locks.ReadWriteLock interface is implemented
by java.util.concurrent.locks.ReadWriteReentrantLock class

11 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

class Hashtable<K,V> {
 …
 // coarse-grained, one lock for table
 ReadWriteLock lk = new ReentrantReadWriteLock();
 V lookup(K key) {
 int bucket = hasher(key);
 lk.readLock().lock(); // only blocks writers
 … read array[bucket] …
 lk.readLock().unlock();
 }
 void insert(K key, V val) {
 int bucket = hasher(key);
 lk.writeLock().lock(); // blocks readers and writers

 … write array[bucket] …
 lk.writeLock().unlock();
 }
}

Example code

12 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Unit 7.4: Linearizability, Correctness of
Concurrent Objects

• A concurrent object is an object that can correctly handle methods invoked concurrently
by different tasks or threads

—e.g., AtomicInteger, ConcurrentHashMap, ConcurrentLinkedQueue, …
• For the discussion of linearizability, we will assume that the body of each method in a

concurrent object is itself sequential
—Assume that methods do not create threads or async tasks

• Consider a simple FIFO (First In, First Out) queue as a canonical example of a concurrent
object

—Method q.enq(o) inserts object o at the tail of the queue
– Assume that there is unbounded space available for all enq() operations to

succeed
—Method q.deq() removes and returns the item at the head of the queue.

– Throws EmptyException if the queue is empty.
• Without seeing the implementation of the FIFO queue, we can tell if an execution of calls

to enq() and deq() is correct or not, in a sequential program
• How can we tell if the execution is correct for a parallel program?

13 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Linearization: identifying a sequential
order of concurrent method calls

time

q.deq():x

q.enq(x)

 enq(x) deq() returns x

 isolated-wait/begin isolated-end

isolated-wait/begin isolated-end

“Linearizability” --
identify order of enq()
and deq() calls that is
consistent with
sequential execution

enq

deq

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

14 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Task T1

Task T2

http://www.elsevierdirect.com/companions/9780123705914/Lecture%2520Slides/03~Chapter_03.ppt

Informal definition of Linearizability

• Assume that each method call takes effect “instantaneously”
at some point in time between its invocation and return.

• An execution (schedule) is linearizable if we can choose one
set of instantaneous points that is consistent with a sequential
execution in which methods are executed at those points
• It’s okay if some other set of instantaneous points is not

linearizable
• A concurrent object is linearizable if all its executions are

linearizable
• Linearizability is a “black box” test based on the object’s

behavior, not its internals

15 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Example 1: is this execution
linearizable?

time

q.enq(x)

q.enq(y) q.deq():x

q.deq():y

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

16 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Task T1

Task T2

linearizable(2)

(1)

(3)

(4)

http://www.elsevierdirect.com/companions/9780123705914/Lecture%2520Slides/03~Chapter_03.ppt

Example 2: is this execution
linearizable?

time

q.enq(x)

q.enq(y)

q.deq():yq.enq(x)

q.enq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

17 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Task T1

Task T2

not linearizable

http://www.elsevierdirect.com/companions/9780123705914/Lecture%2520Slides/03~Chapter_03.ppt

q.enq(x)

q.enq(y)

q.deq():y

q.deq():x

time

Example 3
Is this execution linearizable? How many possible linearizations
does it have?

18 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

linearizable

(two possible linearizations)

Example 4: execution of an isolated
implementation of FIFO queue q

Is this a linearizable execution?

19 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Yes! Can be linearized as “q.enq(x) ; q.enq(y) ; q.deq():x”.

Linearizability of Concurrent Objects
(Summary)

Concurrent object
• A concurrent object is an object that can correctly handle methods

invoked in parallel by different tasks or threads
— Examples: Concurrent Queue, AtomicInteger

Linearizability
• Assume that each method call takes effect “instantaneously” at some

distinct point in time between its invocation and return.
• An execution is linearizable if we can choose instantaneous points

that are consistent with a sequential execution in which methods are
executed at those points

• An object is linearizable if all its possible executions are linearizable

20 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

