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Worksheet #30 solution: Variant of Word
Count
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JavaRDD<String> file = context.textFile(inputFile);
// Change w.r.t. slide 13: replace s by s.length()
JavaPairRDD<???, Integer> counter =
file.flatMap(s -> Arrays.asList(s.split(" ")))
.mapToPair(s -> new Tuple2<>(s.length(), 1))
.reduceByKey((a, b) -> a + b);

counter.collect().forEach(System.out::println);

a) In the space below, indicate what type should be provided instead of ??? in

line 3.

Integer

b) Also, explain what this program computes.

The frequencies of word lengths
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Background for TF-IDF algorithm
(can be implemented as M-R jobs in Hadoop or Spark)

Goal: Given a document, D_0, find most similar documents in a collection of
documents,D 1,...,D N

Approach: model each document as a multiset of terms (“bag of words”) and
use word frequencies to guide similarity search. Let TERM_1, TERM_2, ...
represent all the terms across all documents

Definitions
—TF(i,j) = total frequency (count) of TERM_i in document D_j
- Measure of significant terms in a document
—DF(i) = number of documents that contain TERM_i
—IDF(i) = N / DF(i)
- Measure of how common or rare a term is across all documents
—Commonly used weight of TERM_i in D_j = TF(i,j) * log (IDF(i))

See https://len.wikipedia.org/wiki/Tf-idf for more background
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Map-Reduce Job 1: Computing TF

* Map task

— Input: (D_i, TERM_j) pairs for all terms in documents
(including duplicates)

— Output: ((D_i, TERM_j), 1) for each input pair
* Reduce task

— Use SUM as reduce operator
— Outputs ((D_i, TERM_j), TF(i,j))

COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)



Map-Reduce Job 2: Computing DF

* Map task

— Input: (D_i, TERM_j) pairs for all terms in documents
(without duplicates)

— Output: for each document, (TERM_j, 1) for occurrence of
TERM_j

* Reduce task
— Use SUM as reduce operator
— Outputs (TERM_j, DF(j))

 IDF can be easily computed from DF using a map task

COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)



Background for PageRank algorithm
and its implementation in Spark

 Give pages ranks (scores) based on links to them
—Links from many pages = high rank
—Link from a high-rank page = high rank

* Needs an iterative map-reduce algorithm o °I '/‘

e Good match for Spark’s in-memory 9
processing capabilities

Acknowledgment: slides for this topic were taken from “Parallel Programming With
Spark” lecture by Prof. Matei Zaharia, Stanford University
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Algorithm

Start each page at a rank of 1

FOR (iter = ...) {
1.0n each iteration, have each page A contribute to the rank of B
when there is a link (edge) from A to B

CONTRIBS(B) += RANK(A) / DEST_COUNT(A)
2. Update all page ranks to RANK(B) = 0.15 + 0.85 x CONTRIBS(B)

1.0

1.0 j< j 1.0

1.0

7 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)



Example: First Iteration

1.85

' 0.58
1.0
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Example: Successive lterations

1.85
058 j< ; 10 Final state:
1.44
0.58

-

0.39

\E/% 0.73
0.58
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Announcements and Reminders

« Checkpoint 1 for Homework 4 is due this Wednesday by 11:59pm
(April 3rd)

* Quiz for Unit 8 is due by Friday, April 5th at 11:59pm

 Final exam (Exam 2) is scheduled at 9am - 12noon on Wednesday,
May 1st (scope of exam is limited to lectures 18 - 38)

10 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)



