COMP 322: Fundamentals of Parallel Programming

Lecture 31: TF-IDF and Page Rank Algorithms
using Map-Reduce Parallelism

Mack Joyner and Zoran Budimli¢
{mjoyner, zoran}@rice.edu

http:/comp322.rice.edu

COMP 322 Lecture 31
April 2019

http://comp322.rice.edu

Worksheet #30 solution: Variant of Word
Count

(o))} (O3 [~ w [\ =
.

JavaRDD<String> file = context.textFile(inputFile);
// Change w.r.t. slide 13: replace s by s.length()
JavaPairRDD<???, Integer> counter =
file.flatMap(s -> Arrays.asList(s.split(" ")))
.mapToPair(s -> new Tuple2<>(s.length(), 1))
.reduceByKey((a, b) -> a + b);

counter.collect().forEach(System.out::println);

a) In the space below, indicate what type should be provided instead of ??? in

line 3.

Integer

b) Also, explain what this program computes.

The frequencies of word lengths

COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢) @

Background for TF-IDF algorithm
(can be implemented as M-R jobs in Hadoop or Spark)

Goal: Given a document, D_0, find most similar documents in a collection of
documents,D 1,...,D N

Approach: model each document as a multiset of terms (“bag of words”) and
use word frequencies to guide similarity search. Let TERM_1, TERM_2, ...
represent all the terms across all documents

Definitions
—TF(i,j) = total frequency (count) of TERM_i in document D_j
- Measure of significant terms in a document
—DF(i) = number of documents that contain TERM_i
—IDF(i) = N / DF(i)
- Measure of how common or rare a term is across all documents
—Commonly used weight of TERM_i in D_j = TF(i,j) * log (IDF(i))

See https://len.wikipedia.org/wiki/Tf-idf for more background

COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

Map-Reduce Job 1: Computing TF

* Map task

— Input: (D_i, TERM_j) pairs for all terms in documents
(including duplicates)

— Output: ((D_i, TERM_j), 1) for each input pair
* Reduce task

— Use SUM as reduce operator
— Outputs ((D_i, TERM_j), TF(i,j))

COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

Map-Reduce Job 2: Computing DF

* Map task

— Input: (D_i, TERM_j) pairs for all terms in documents
(without duplicates)

— Output: for each document, (TERM_j, 1) for occurrence of
TERM_j

* Reduce task
— Use SUM as reduce operator
— Outputs (TERM_j, DF(j))

 IDF can be easily computed from DF using a map task

COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

Background for PageRank algorithm
and its implementation in Spark

 Give pages ranks (scores) based on links to them
—Links from many pages = high rank
—Link from a high-rank page = high rank

* Needs an iterative map-reduce algorithm o °I '/‘

e Good match for Spark’s in-memory 9
processing capabilities

Acknowledgment: slides for this topic were taken from “Parallel Programming With
Spark” lecture by Prof. Matei Zaharia, Stanford University

6 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢) 8

Algorithm

Start each page at a rank of 1

FOR (iter = ...) {
1.0n each iteration, have each page A contribute to the rank of B
when there is a link (edge) from A to B

CONTRIBS(B) += RANK(A) / DEST_COUNT(A)
2. Update all page ranks to RANK(B) = 0.15 + 0.85 x CONTRIBS(B)

1.0

1.0 j< j 1.0

1.0

7 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

Example: First Iteration

1.85

' 0.58
1.0

COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

j 1.0

Example: Successive lterations

1.85
058 j< ; 10 Final state:
1.44
0.58

-

0.39

\E/% 0.73
0.58

9 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

Announcements and Reminders

« Checkpoint 1 for Homework 4 is due this Wednesday by 11:59pm
(April 3rd)

* Quiz for Unit 8 is due by Friday, April 5th at 11:59pm

 Final exam (Exam 2) is scheduled at 9am - 12noon on Wednesday,
May 1st (scope of exam is limited to lectures 18 - 38)

10 COMP 322, Spring 2019 (M.Joyner, Z. Budimli¢)

