
COMP 322: Fundamentals of Parallel Programming 

Lecture 32: Partitioned Global Address Space (PGAS)  
programming models

Zoran Budimlić and Mack Joyner 
{zoran, mjoyner}@rice.edu 

http://comp322.rice.edu 

COMP 322                             Lecture 32              5 April 2019 



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Worksheet #31: PageRank Example

�2

Name: ___________________________          Net ID: ___________________

In the space below, indicate what you expect the relative ranking to be for the 
three pages below (with the given links).  Show your computation (approximations 
are fine).  
Final, after 7 iterations: 
(1) Amazon = 1.22 
(2) Yahoo   = 1.15  
(3) Microsoft = 0.65  



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Partitioned Global Address Space Languages

• Global address space 
—one-sided communication (GET/PUT) 

• Programmer has control over performance-critical factors  
—data distribution and locality control 
—computation partitioning 
—communication placement 

• Data movement and synchronization as language primitives 
—amenable to compiler-based communication optimization 

• “Global view” rather than “local view”

�3

• simpler than two-sided message passing in 
MPI

• lacking in thread-based models 
• HJ places (Lecture 34) help with locality 

control but not with data distribution

Global View Local View (4 processes)



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Partitioned Global Address Space (PGAS) Languages

• Unified Parallel C      (C)                http://upc.wikinet.org  
• Titanium                         (early Java)  http://titanium.cs.berkeley.edu  
• Coarray Fortran 2.0   (Fortran)     http://caf.rice.edu  
• UPC++                        (C++)            https://bitbucket.org/upcxx 
• Habanero-UPC++         (C++)        http://habanero-rice.github.io/habanero-upc/  
• OpenSHMEM                 (C)                      http://openshmem.org/site/ 

• Related efforts: newer languages developed since 2003 as part of the DARPA 
High Productivity Computing Systems (HPCS) program 

—IBM: X10 (starting point for Habanero-Java) 
—Cray: Chapel 
—Oracle/Sun: Fortress

�4



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

PGAS model

• A collection of “threads” (like MPI processes) operating in a partitioned global address space 
that is logically distributed across threads. 

• Each thread has affinity with a portion of the globally shared address space. Each thread has 
also a private space. 

• Elements in the partitioned global space co-located with a thread are said to have affinity to 
that thread.

�5



• Multiple threads working independently in a SPMD fashion 
—MYTHREAD specifies thread index (0..THREADS-1) 

– Like MPI processes and ranks 
—# threads specified at compile-time or program launch time 

• Partitioned Global Address Space (different from MPI) 

• A pointer-to-shared can reference all locations in the shared space 

• A pointer-to-local (“plain old C pointer”) may only reference addresses in its private space 
or addresses in its portion of the shared space 

• Static and dynamic memory allocations are supported for both shared and private memory 

• Threads synchronize as necessary using 
—synchronization primitives 
—shared variables

Unified Parallel C (UPC) Execution Model

�6 COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Shared and Private Data

• Static and dynamic memory allocation of each type of data 

• Shared objects placed in memory based on affinity 
—shared scalars have affinity to thread 0 
– here, a scalar means a non-array instance of any type (could be a struct, for 

example) 
—by default, elements of shared arrays are allocated “round robin” among 

memory modules co-located with each thread (cyclic distribution)

�7



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

A One-dimensional Shared Array

Consider the following data layout directive 

shared int y[2 * THREADS + 1]; 

For THREADS = 3, we get the following “cyclic” layout

Thread 0

y[3]

y[0]

y[4]

y[1]

Thread 1

z
y[5]

y[2]

Thread 2

y[6]

�8



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

A Multi-dimensional Shared Array

Thread 0

A[0][0]
A[1][0]
A[2][0]
A[3][0]

A[0][1]
A[1][1]
A[2][1]
A[3][1]

A[0][2]
A[1][2]
A[2][2]
A[3][2]

Thread 1 Thread 2

shared int A[4][THREADS]; 
  

For THREADS = 3, we get the following cyclic layout

�9



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Shared and Private Data
Consider the following data layout directives 

shared int x; // x has affinity to thread 0  
shared int y[THREADS]; 
int z;        // private 

For THREADS = 3, we get the following layout:
Thread 0

x

z

y[0]

z

y[1]

Thread 1

z
z

y[2]

Thread 2

�10



• Can specify a blocking factor for shared arrays to obtain “block-cyclic” distributions 
— default block size is 1 element ⇒ cyclic distribution 

• Shared arrays are distributed on a block per thread basis, round robin allocation of 
block size chunks  

• Example layout using block size specifications 
— e.g., shared [2] int a[16]

COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Controlling the Layout of Shared Arrays

a[0]
a[1]
a[6]
a[7]

a[2]
a[3]
a[8]
a[9]

a[4]
a[5]
a[10]
a[11]

a[12]
a[13]

a[14]
a[15]

Thread 0 Thread 1 Thread 2

�11

Block Size



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Blocking Multi-dimensional Data

• Consider the data declaration 
—shared [3] int A[4][THREADS];  

• When THREADS = 4, this results in the following data layout

A[0][0]
A[0][1]
A[0][2]
A[3][0]
A[3][1]
A[3][2]

A[0][3]
A[1][0]
A[1][1]
A[3][3]

A[1][2]
A[1][3]
A[2][0]

A[2][1]
A[2][2]
A[2][3]

Thread 0 Thread 1 Thread 2 Thread 3

�12



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

A Simple UPC Program: Vector Addition
 //vect_add.c 
 #include <upc_relaxed.h> 

#define N 100*THREADS 
 
shared int v1[N], v2[N], v1plusv2[N]; 

 
void main() { 
   int i; 
  for(i=0; i<N; i++) 

      if (MYTHREAD == i % THREADS)          
         v1plusv2[i]=v1[i]+v2[i]; 

} 
 

Iteration #:

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

Thread 0

0
2

Thread 1

1
3

…

…

…

S
hared S

pace

Each thread executes each iteration to 
check if it should perform work

�13



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

 A More Efficient Vector Addition
 //vect_add.c 
 #include <upc_relaxed.h> 

#define N 100*THREADS 
 
shared int v1[N], v2[N], v1plusv2[N]; 

 
void main() { 
   int i; 

    for(i = MYTHREAD; i < N;  
        i += THREADS) 
      v1plusv2[i]=v1[i]+v2[i]; 

} 
 

Iteration #:

Each thread executes only its own iterations

�14

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

Thread 0

0
2

Thread 1

1
3

…

…

…

S
hared S

pace



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Worksharing with upc_forall

• Distributes independent iterations across threads 

• Simple C-like syntax and semantics 
—upc_forall(init; test; loop; affinity) 

• Affinity is used to enable locality control 
—usually, the goal is to map iteration to thread where (all/most of) the 

iteration’s data resides 

• Affinity can be  
—an integer expression (with implicit mod on NUMTHREADS), or a  
—reference to (address of) a shared object

�15



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Work Sharing + Affinity with upc_forall

• Example 1: explicit data affinity using shared references 
shared int a[100],b[100], c[100]; 
int i; 
upc_forall (i=0; i<100; i++; &a[i]) 
  // Execute iteration i at a[i]’s thread 
  a[i] = b[i] * c[i]; 

• Example 2: implicit data affinity with integer expressions  
shared int a[100],b[100], c[100]; 
int i; 
upc_forall (i=0; i<100; i++; i) 
  // Execute iteration i at thread i%THREADS 
  a[i] = b[i] * c[i];

• Both yield a round-robin distribution of iterations

�16



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Work Sharing + Affinity with upc_forall

3300..39675..99
2200..29650..74
1100..19625..49
00..960..24
i*THREADS/100i*THREADSiteration i

• Example 3: implicit affinity by chunks 
shared [25] int a[100],b[100], c[100]; 
int i; 
upc_forall (i=0; i<100; i++; (i*THREADS)/100) 
    a[i] = b[i] * c[i]; 

• Assuming 4 threads, the distribution of upc_forall iterations is as follows:

�17



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Synchronization in UPC

• Barriers  (blocking) 
—upc_barrier 

– like “next” operation in HJ 

• Split-phase barriers (non-blocking) 
—upc_notify 

– like explicit (non-blocking) signal on an HJ phaser 
—upc_wait 

– upc_wait is like explicit wait on an HJ phaser 

• Lock primitives 
—void upc_lock(upc_lock_t *l) 
—int upc_lock_attempt(upc_lock_t *l) // like trylock() 
—void upc_unlock(upc_lock_t *l)

�18



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

C++ 
Compiler 

UPC++ 
Program

UPC++ 
Template 
Header 
Files

Linker

UPC++ 
idioms are 
translated  
to C++

Object 
file w. 
runtime 
calls

Exe

GASNet

System 
Libs

UPC++ 
Runtime

• Leverage C++ standards and 
compilers
- Implement UPC++ as a C++ 

template library
- C++ templates can be used as a 

mini-language to extend C++ 
syntax

• Many new features in C++11
- E.g., type inference, variadic 

templates, lambda functions, r-
value references 

- C++ 11 is well-supported by major 
compilers

UPC++ library: a “Compiler-Free” Approach for PGAS (source: LBNL)

�19



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Habanero-UPC++: Extending UPC++ with Task Parallelism  
(LBNL, Rice)

1. finish ( [capture_list1] () { 
2.   // Any Habanero dynamic tasking constructs 
3.     . . . // finish, async, asyncAwait 
4.     . . .  
5.  // Remote function invocation 
6.  asyncAt ( destPlace, [capture_list2] ( ) {  
7.   Statements; 
8.  }); 
9.  . . .  
10. // Remote copy with completion signal in result 
11. asyncCopy ( src, dest, count, ddf=NULL ); 
12.   . . . 
13. asyncAwait(ddf, ….); // local 
14.}); // waits for all local/remote async’s to complete

�20

“HabaneroUPC++: A Compiler-free PGAS Library.” V. Kumar, Y. Zheng, V. Cavé, Z. Budimlić, V. Sarkar, PGAS 2015.



COMP 322, Spring 2019 (M.Joyner, Z.Budimlić)

Example code structure from an application run on ORNL 
supercomputer (LSMS)

MPI version: 
// Post MPI_IRecv() calls 
. . . 
// Post MPI_ISend() calls 
. . . 
// Perform all MPI_Wait()  
// calls   
. . . 
// Perform tasks 
// Each task needs results  
// from two MPI_IRecv() calls 
. . . async(…) 

�21

Habanero-UPC++ version: 
// Issue one-sided 
// asyncCopy() calls 
. . . 
// Issue data-driven tasks  
// in any order without any  
// wait/barrier operations 
hcpp::asyncAwait( 
      result1, result2,  
      [=]() { task body }); 
. . . 
  

MPI version waits for all IRecv() calls to 
complete before executing all tasks (like 
a barrier)

Habanero-UPC++ version specifies that 
each asyncAwait() task can complete when 
its two results become available from 
asyncCopy() calls


