
1.A =               [5 7 3 1 4 2 7 2] 
2.A⟨0⟩ =             [1 1 1 1 0 0 1 0] //lowest bit
3.A←split(A,A⟨0⟩) = [4 2 2 5 7 3 1 7] 
4.A⟨1⟩ =             [0 1 1 0 1 1 0 1] // middle bit
5.A←split(A,A⟨1⟩) = [4 5 1 2 2 7 3 7] 
6.A⟨2⟩ =             [1 1 0 0 0 1 0 1] // highest bit
7.A←split(A,A⟨2⟩) = [1 2 2 3 4 5 7 7] 

Worksheet #36:  
Parallelizing the Split step in Radix Sort

15 COMP 322, Spring 2019 (M.Joyner, Z. Budimlić)

Name: ___________________          Netid: ___________________

The Radix Sort algorithm loops over the bits in the binary representation of the keys, 
starting at the lowest bit, and executes a split operation for each bit as shown below.  
The split operation packs the keys with a 0 in the corresponding bit to the bottom of a 
vector, and packs the keys with a 1 to the top of the same vector. It maintains the order 
within both groups. The sort works because each split operation sorts the keys with 
respect to the current bit and maintains the sorted order of all the lower bits.  Your task 
is to show how the split operation can be performed in parallel using scan, reverse, 
not(Flags) operations, and to explain your answer. 

   


