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Computation Graph Exercise

(F1)
(WV) { Watch COMP 322 video for topic 1.2 by 1lpm on Wednesday
Watch COMP 322 video for toptic 1.3 by 1pm on Wednesday

}

async (MB) Make your bed

async (SF) { Clean out your fridge

finish

async
async
async
}

Post on

Buy food supplies and store them in fridge }
(F2) { async Run load 1 in washer (LW1)
Run load 2 in washer (LW2) }
Run load 1 in dryer (LD1)
Run load 2 in dryer (LD2)
Call your famtily (CF)

Facebook that you’'re done with all your tasks! (PF)
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omputation Graph Exercise
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One Possible Solution to Worksheet 2
(Reverse Engineering a Computation Graph)

Observations:

@) g@

- Any node with out-degree > 1 must be an async
(must have an outgoing spawn edge)

- Any node with in-degree > 1 must be an end-finish
(must have an incoming join edge

- Adding or removing transitive edges does not impact

ordering constraints
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1.A();

2.finish { // F1

3. async D();

B()’

E()’

finish { // F2
async H() ;
F();

9. } // F2

10. G() ;

11.} // F1

12.C() ;
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Ordering Constraints and Transitive Edges in a Computation Graph

e The primary purpose of a computation graph is to determine if an ordering constraint exists
between two steps (nodes)

—QODbservation: Node A must be performed before node B if there is a path of directed edges from A and B

* An edge, X Y, in a computation graph s said to be transitive if there exists a path of directed
edges from X to Y that does not include the X =Y edge

—QODbservation: Adding or removing a transitive edge does not change the ordering constraints in a
computation graph
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|deal Parallelism (Recap)

» Define ideal parallelism of
Computation G Graph as the ratio,
WORK(G)/CPL(G)

» |deal Parallelism only depends
on the computation graph, and is
the speedup that you can obtain
with an unbounded number of
Processors

Example:

WORK(G) = 26

CPL(G) = 11

Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36
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What is the critical path length of this parallel computation?

1. finish { // F1

2. async A; // Boil water & pasta (10)
3. finish { // F2

4. async Bl; // Chop veggies (5)

5. async B2; // Brown meat (10)

6. } // F2

7. B3; // Make pasta sauce (5)

8. } // F1

Step A
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Scheduling of a Computation Graph on a fixed number of processors

NOTE: this schedule achieved a
completion time of 11. Can we
do better?
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Start time c1 Proc 2 Proc 3
0] A
1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H

11

Completion time = 11




Scheduling of a Computation Graph on a fixed number of processors

* Assume that node N takes TIME(N) regardless of which processor it executes on, and that there is
no overhead for creating parallel tasks

* A schedule specifies the following for each node
—START(N) = start time

—PROC(N) = index of processor in range 1...P

such that
—START(I) + TIME(1) <= START()), for all CG edges from i to | (Precedence constraint)

—A node occupies consecutive time slots in a processor (Non-preemption constraint)
—All nodes assigned to the same processor occupy distinct time slots (Resource constraint)
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Greedy Schedule

* A greedy schedule is one that never forces a processor to be idle when one or more nodes are
ready for execution

* Anode is ready for execution if all its predecessors have been executed
 Observations

—T4 = WORK(G), for all greedy schedules
—T. = CPL(G), for all greedy schedules

o [5(S) = execution time of schedule S for computation graph G on P processors
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Lower Bounds on Execution Time of Schedules

- Let Tp = execution time of a schedule for computation graph G on P processors
—Tp can be different for different schedules, for same values of G and P

e Lower bounds for all greedy schedules
—Capacity bound: T, = WORK(G)/P
—Critical path bound: Tp = CPL(G)

e Putting them together
—Tp = max(WORK(G)/P, CPL(G))
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Upper Bound on Execution Time of Greedy Schedules

Theorem [Graham '606].
Any greedy scheduler achieves

To < WORK(G)/P + CPL(G)

Proof sketch:
Define a time step to be complete if P processors are
scheduled at that time, or otherwise

# complete time steps < WORK(G)/P

# incomplete time steps < CPL(G)
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Start time

Proc 1

Proc 2

Proc 3
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Bounding the Performance of Greedy Schedulers

Combine lower and upper bounds to get
max(WORK(G)/P, CPL(G)) = Tp = WORK(G)/P + CPL(G)

Corollary: Any greedy scheduler achieves execution time Ty that is within a factor of 2 of the optimal
time (since max(a,b) and (a+b) are within a factor of 2 of each other, foranya=0,b=0).

COMP 322, Spring 2020 (M.Joyner)



