COMP 322: Fundamentals of Parallel Programming

Lecture 3: Multiprocessor Scheduling

Mack Joyner
mjoyner@rice.edu

http:/comp322.rice.edu

COMP 322 Lecture 3 January 2020 A

http://comp322.rice.edu

O© 00 J O U1 A W N =

10.
11.
12.
13.
14.

. Tinish {

async

Computation Graph Exercise

(F1)
(WV) { Watch COMP 322 video for topic 1.2 by 1lpm on Wednesday
Watch COMP 322 video for toptic 1.3 by 1pm on Wednesday

}

async (MB) Make your bed

async (SF) { Clean out your fridge

finish

async
async
async
}

Post on

Buy food supplies and store them in fridge }
(F2) { async Run load 1 in washer (LW1)
Run load 2 in washer (LW2) }
Run load 1 in dryer (LD1)
Run load 2 in dryer (LD2)
Call your famtily (CF)

Facebook that you’'re done with all your tasks! (PF)

COMP 322, Spring 2020 (M.Joyner)

omputation Graph Exercise

COMP 322, Spring 2020 (M.Joyner)

One Possible Solution to Worksheet 2
(Reverse Engineering a Computation Graph)

Observations:

@) g@

- Any node with out-degree > 1 must be an async
(must have an outgoing spawn edge)

- Any node with in-degree > 1 must be an end-finish
(must have an incoming join edge

- Adding or removing transitive edges does not impact

ordering constraints

COMP 322, Spring 2020 (M.Joyner)

1.A();

2.finish { // F1

3. async D();

B()’

E()’

finish { // F2
async H() ;
F();

9. } // F2

10. G() ;

11.} // F1

12.C() ;

o0 J o O b

Ordering Constraints and Transitive Edges in a Computation Graph

e The primary purpose of a computation graph is to determine if an ordering constraint exists
between two steps (nodes)

—QODbservation: Node A must be performed before node B if there is a path of directed edges from A and B

* An edge, X Y, in a computation graph s said to be transitive if there exists a path of directed
edges from X to Y that does not include the X =Y edge

—QODbservation: Adding or removing a transitive edge does not change the ordering constraints in a
computation graph

COMP 322, Spring 2020 (M.Joyner) $§

|deal Parallelism (Recap)

» Define ideal parallelism of
Computation G Graph as the ratio,
WORK(G)/CPL(G)

» |deal Parallelism only depends
on the computation graph, and is
the speedup that you can obtain
with an unbounded number of
Processors

Example:

WORK(G) = 26

CPL(G) = 11

Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

COMP 322, Spring 2020 (M.Joyner)

What is the critical path length of this parallel computation?

1. finish { // F1

2. async A; // Boil water & pasta (10)
3. finish { // F2

4. async Bl; // Chop veggies (5)

5. async B2; // Brown meat (10)

6. } // F2

7. B3; // Make pasta sauce (5)

8. } // F1

Step A

COMP 322, Spring 2020 (M.Joyner)

Scheduling of a Computation Graph on a fixed number of processors

NOTE: this schedule achieved a
completion time of 11. Can we
do better?

COMP 322, Spring 2020 (M.Joyner)

Start time c1 Proc 2 Proc 3
0] A
1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H

11

Completion time = 11

Scheduling of a Computation Graph on a fixed number of processors

* Assume that node N takes TIME(N) regardless of which processor it executes on, and that there is
no overhead for creating parallel tasks

* A schedule specifies the following for each node
—START(N) = start time

—PROC(N) = index of processor in range 1...P

such that
—START(I) + TIME(1) <= START()), for all CG edges from i to | (Precedence constraint)

—A node occupies consecutive time slots in a processor (Non-preemption constraint)
—All nodes assigned to the same processor occupy distinct time slots (Resource constraint)

9 COMP 322, Spring 2020 (M.Joyner) ﬁ/‘?

10

Greedy Schedule

* A greedy schedule is one that never forces a processor to be idle when one or more nodes are
ready for execution

* Anode is ready for execution if all its predecessors have been executed
 Observations

—T4 = WORK(G), for all greedy schedules
—T. = CPL(G), for all greedy schedules

o [5(S) = execution time of schedule S for computation graph G on P processors

COMP 322, Spring 2020 (M.Joyner)

11

Lower Bounds on Execution Time of Schedules

- Let Tp = execution time of a schedule for computation graph G on P processors
—Tp can be different for different schedules, for same values of G and P

e Lower bounds for all greedy schedules
—Capacity bound: T, = WORK(G)/P
—Critical path bound: Tp = CPL(G)

e Putting them together
—Tp = max(WORK(G)/P, CPL(G))

COMP 322, Spring 2020 (M.Joyner)

Upper Bound on Execution Time of Greedy Schedules

Theorem [Graham '606].
Any greedy scheduler achieves

To < WORK(G)/P + CPL(G)

Proof sketch:
Define a time step to be complete if P processors are
scheduled at that time, or otherwise

complete time steps < WORK(G)/P

incomplete time steps < CPL(G)

12 COMP 322, Spring 2020 (M.Joyner)

Start time

Proc 1

Proc 2

Proc 3

O oo ~N o Ol H w

I © m m| O O| O] | O|W|>

y,v, y.v, | O Z| Z Z | Z

© @) < — ~ <y I~

11

13

Bounding the Performance of Greedy Schedulers

Combine lower and upper bounds to get
max(WORK(G)/P, CPL(G)) = Tp = WORK(G)/P + CPL(G)

Corollary: Any greedy scheduler achieves execution time Ty that is within a factor of 2 of the optimal
time (since max(a,b) and (a+b) are within a factor of 2 of each other, foranya=0,b=0).

COMP 322, Spring 2020 (M.Joyner)

