COMP 322: Fundamentals of Parallel Programming

Lecture 4: Parallel Speedup and Amdahl's Law

Mack Joyner
mjoyner@rice.edu

http:/comp322.rice.edu

COMP 322 Lecture 4 January 2020 A

http://comp322.rice.edu

One Possible Solution to Worksheet 3
(Multiprocessor Scheduling)

Start time

S
>

1
2
3
4
5
6
7
8
9

pd
(e

pt
(=Y

o
\®

e As before, WORK =26 and CPL = 11 for this graph

T R "I R | RO 2| 2 2| 2

[
w

T, =15, for the 2-processor schedule on the right

Tl ol 2 Rl e=|l—=] =Dl Ol O] O ol =

e We can also see that max(CPL,WORK/2) <= T, < CPL + WORK/2

pt
N

e There are 4 idle slots in this schedule — can we do betterthan To =15 ?

[
()|

COMP 322, Spring 2020 (M.Joyner)

Parallel Speedup

« Define Speedup(P)=T4/ Tp
—+Factor by which P processors speeds up execution time relative to 1 processor, for fixed input size

—For ideal executions without overhead, 1 <= Speedup(P) <= P

—You see this with abstract metrics, but bounds may not hold when measuring real execution times with
real overheads

—Linear speedup
- When Speedup(P) = k*P, for some constantk, 0 <k <1

o [deal Parallelism = WORK/CPL = T,/ T.
= Parallel Speedup on an unbounded (infinite) number of processors

COMP 322, Spring 2020 (M.Joyner)

Computation Graph for Recursive Tree approach to computing
Array Sum in parallel

X0 X1l X2 X3l X4l Xl X6 X[)

N\ N\ N\ N\

@ stride = 1, size = 4

X[0) AlZ] Al4] A

stride = 2, size = 2

K(0) X(4]

Gf stride = 4, size = 1

X(0]
Assume greedy schedule, input array size S is a power of 2, each add takes 1 time unit

e WORK(G) = S-1, and CPL(G) = log2(S)
* Define T(S,P) = parallel execution time for Array Sum with size S on P processors
e Use upper bound T(S,P) <= WORK(G)/P + CPL(G) as a worst-case estimate

T(S,P) = WORK(G)/P + CPL(G) = (S-1)/P +log2(S) = Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + log2(S))

COMP 322, Spring 2020 (M.Joyner)

How many processors should we use?

Define Efficiency(P) = Speedup(P)/ P = T+/(P * Tp)
—Processor efficiency --- figure of merit that indicates how well a parallel program uses available
Processors
—For ideal executions without overhead, 1/P <= Efficiency(P) <=1

—Efficiency(P) = 1 (100%) is the best we can hope for

COMP 322, Spring 2020 (M.Joyner)

How many processors should we use?

What should be the minimum efficiency to determine how many processors we should use?

COMP 322, Spring 2020 (M.Joyner)

Array Sum: Speedup as a function of array size S and nhumber of
processors P

« Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + logz(S))
 Asymptotically, Speedup(S,P) —(S-1)/10gz2S, as P — infinity

eim»Speedup (S=1024) === Speedup (S=2048)

180
160
140
120
100
80
60
40
20

Speedup(S,P)

1 2 4 8 16 32 64 128 256 512 1024

Number of processors, P (log scale)

COMP 322, Spring 2020 (M.Joyner)

Amdahl’'s Law

If g <1 is the fraction of WORK in a parallel program that must be executed sequentially for a given
input size S, then the best speedup that can be obtained for that program is Speedup(S,P) < 1/q.

COMP 322, Spring 2020 (M.Joyner)

Amdahl’'s Law

Observation follows directly from critical path length lower bound on parallel execution time
— CPL>=q* T(S,1)
—T(S,P) >=q * T(S,1)
— Speedup(S,P) = T(S,1)/T(S,P) <= 1/g

Upper bound on speedup simplistically assumes that work can be divided into sequential and
parallel portions

—Sequential portion of WORK =g
- also denoted as fg (fraction of sequential work)

—~Parallel portion of WORK = 1-g
- also denoted as f; (fraction of parallel work)

COMP 322, Spring 2020 (M.Joyner)

lllustration of Amdahl’s Law:
Best Case Speedup as function of Parallel Portion

Amdahl’s Law

20.00 ——
//

18.00 - |

/ Parallel Portion
16.00 7 — 50%

/ — 75%

14.00 — 90%

/ — 95%

12.00
Q /
=
810'00 7 —
& / //
8.00 /
6.00 //
4,00 /
' Y
/|
L~
2.00- ——
0.00
I
~ N S 0 W N W0
— m O
Number of Processors

COMP 322, Spring 2020 (M.Joyner)

Announcements & Reminders

No lab tomorrow

.—

Quiz #1 available today, due Friday, Jan. 31st at 11:59pm
HW #1 due on Wednesday, Jan. 29th at 11:59pm
IMPORTANT: Watch video & read handout for topic 2.1 for lecture on Friday

I—

COMP 322, Spring 2020 (M.Joyner)

