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One Possible Solution to Worksheet 3
(Multiprocessor Scheduling)
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e As before, WORK =26 and CPL = 11 for this graph
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T, =15, for the 2-processor schedule on the right

Tl ol 2 Rl e=|l—=] =Dl Ol O] O ol =

e We can also see that max(CPL,WORK/2) <= T, < CPL + WORK/2
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e There are 4 idle slots in this schedule — can we do betterthan To =15 ?
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Parallel Speedup

« Define Speedup(P)=T4/ Tp
—+Factor by which P processors speeds up execution time relative to 1 processor, for fixed input size

—For ideal executions without overhead, 1 <= Speedup(P) <= P

—You see this with abstract metrics, but bounds may not hold when measuring real execution times with
real overheads

—Linear speedup
- When Speedup(P) = k*P, for some constantk, 0 <k <1

o [deal Parallelism = WORK/CPL = T,/ T.
= Parallel Speedup on an unbounded (infinite) number of processors
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Computation Graph for Recursive Tree approach to computing
Array Sum in parallel
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Assume greedy schedule, input array size S is a power of 2, each add takes 1 time unit

e WORK(G) = S-1, and CPL(G) = log2(S)
* Define T(S,P) = parallel execution time for Array Sum with size S on P processors
e Use upper bound T(S,P) <= WORK(G)/P + CPL(G) as a worst-case estimate

T(S,P) = WORK(G)/P + CPL(G) = (S-1)/P +log2(S) = Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + log2(S))
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How many processors should we use?

Define Efficiency(P) = Speedup(P)/ P = T+/(P * Tp)
—Processor efficiency --- figure of merit that indicates how well a parallel program uses available
Processors
—For ideal executions without overhead, 1/P <= Efficiency(P) <=1

—Efficiency(P) = 1 (100%) is the best we can hope for
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How many processors should we use?

What should be the minimum efficiency to determine how many processors we should use?

COMP 322, Spring 2020 (M.Joyner)



Array Sum: Speedup as a function of array size S and nhumber of
processors P

« Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + logz(S))
 Asymptotically, Speedup(S,P) —(S-1)/10gz2S, as P — infinity

eim»Speedup (S=1024) === Speedup (S=2048)
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Amdahl’'s Law

If g <1 is the fraction of WORK in a parallel program that must be executed sequentially for a given
input size S, then the best speedup that can be obtained for that program is Speedup(S,P) < 1/q.
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Amdahl’'s Law

Observation follows directly from critical path length lower bound on parallel execution time
— CPL>=q* T(S,1)
—T(S,P) >=q * T(S,1)
— Speedup(S,P) = T(S,1)/T(S,P) <= 1/g

Upper bound on speedup simplistically assumes that work can be divided into sequential and
parallel portions

—Sequential portion of WORK =g
- also denoted as fg (fraction of sequential work)

—~Parallel portion of WORK = 1-g
- also denoted as f; (fraction of parallel work)
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lllustration of Amdahl’s Law:
Best Case Speedup as function of Parallel Portion

Amdahl’s Law
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Announcements & Reminders

No lab tomorrow

.—

Quiz #1 available today, due Friday, Jan. 31st at 11:59pm
HW #1 due on Wednesday, Jan. 29th at 11:59pm
IMPORTANT: Watch video & read handout for topic 2.1 for lecture on Friday

I—
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