
COMP 322: Fundamentals of Parallel Programming

Lecture 4: Parallel Speedup and Amdahl’s Law

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 4 January 2020

http://comp322.rice.edu

COMP 322, Spring 2020 (M.Joyner)

One Possible Solution to Worksheet 3
(Multiprocessor Scheduling)

• As before, WORK = 26 and CPL = 11 for this graph
• T2 = 15, for the 2-processor schedule on the right
• We can also see that max(CPL,WORK/2) <= T2 < CPL + WORK/2
• There are 4 idle slots in this schedule — can we do better than T2 = 15 ?

2

1

1

1

4 41

1 1 1

31

1

1

1

1

1

1

1

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

Start%time! Proc%1! Proc%2!

0! A% !

1! B% !

2! C% N%

3! D% N%

4! D% N%

5! D% N%

6! D% O%

7! I% Q%

8! J% R%

9! L% R%

10! K% R%

11! M% E%

12% F% P%

13% G% !

14% H% !

15% ! !

COMP 322, Spring 2020 (M.Joyner)

Parallel Speedup

•Define Speedup(P) = T1 / TP
—Factor by which P processors speeds up execution time relative to 1 processor, for fixed input size
—For ideal executions without overhead, 1 <= Speedup(P) <= P

—You see this with abstract metrics, but bounds may not hold when measuring real execution times with
real overheads

—Linear speedup
–When Speedup(P) = k*P, for some constant k, 0 < k < 1

•Ideal Parallelism = WORK / CPL = T1 / T∞
= Parallel Speedup on an unbounded (infinite) number of processors

3

COMP 322, Spring 2020 (M.Joyner)

Computation Graph for Recursive Tree approach to computing
Array Sum in parallel

Assume greedy schedule, input array size S is a power of 2, each add takes 1 time unit
•WORK(G) = S-1, and CPL(G) = log2(S)
•Define T(S,P) = parallel execution time for Array Sum with size S on P processors
•Use upper bound T(S,P) <= WORK(G)/P + CPL(G) as a worst-case estimate

T(S,P) = WORK(G)/P + CPL(G) = (S-1)/P + log2(S) ⇒ Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + log2(S))

4

COMP 322, Spring 2020 (M.Joyner)

How many processors should we use?

Define Efficiency(P) = Speedup(P)/ P = T1/(P * TP)
—Processor efficiency --- figure of merit that indicates how well a parallel program uses available

processors
—For ideal executions without overhead, 1/P <= Efficiency(P) <= 1
—Efficiency(P) = 1 (100%) is the best we can hope for

5

COMP 322, Spring 2020 (M.Joyner)

How many processors should we use?

What should be the minimum efficiency to determine how many processors we should use?

6

COMP 322, Spring 2020 (M.Joyner)

Array Sum: Speedup as a function of array size S and number of
processors P

•Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + log2(S))
• Asymptotically, Speedup(S,P) →(S-1)/log2S, as P → infinity

7

Number of processors, P (log scale)

Sp
ee

du
p(

S,
P)

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1" 2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Speedup"(S=1024)" Speedup"(S=2048)"

COMP 322, Spring 2020 (M.Joyner)

Amdahl’s Law

If q ≤ 1 is the fraction of WORK in a parallel program that must be executed sequentially for a given
input size S, then the best speedup that can be obtained for that program is Speedup(S,P) ≤ 1/q.

8

COMP 322, Spring 2020 (M.Joyner)

Amdahl’s Law

• Observation follows directly from critical path length lower bound on parallel execution time
— CPL >= q * T(S,1)
— T(S,P) >= q * T(S,1)
— Speedup(S,P) = T(S,1)/T(S,P) <= 1/q

• Upper bound on speedup simplistically assumes that work can be divided into sequential and
parallel portions

—Sequential portion of WORK = q
– also denoted as fS (fraction of sequential work)

—Parallel portion of WORK = 1-q
– also denoted as fp (fraction of parallel work)

9

COMP 322, Spring 2020 (M.Joyner)

Illustration of Amdahl’s Law:
Best Case Speedup as function of Parallel Portion

10

COMP 322, Spring 2020 (M.Joyner)

Announcements & Reminders

• No lab tomorrow

• Quiz #1 available today, due Friday, Jan. 31st at 11:59pm

• HW #1 due on Wednesday, Jan. 29th at 11:59pm

• IMPORTANT: Watch video & read handout for topic 2.1 for lecture on Friday

11

