COMP 322: Fundamentals of Parallel Programming

Lecture 11: Iteration Grouping, Barrier Synchronization

Mack Joyner
mjoyner@rice.edu

http:/comp322.rice.edu

COMP 322 Lecture 11 February 2020 @


http://comp322.rice.edu

Solution to Worksheet #11: One-dimensional Iterative Averaging
Example

1) Assuming n=9 and the input array below, perform a “half-iteration” of the iterative averaging
example by only filling in the blanks for odd values of j in the myNew(] array (different from the real
algorithm). Recall that the computation is “myNew]j] = (myVallj-1] + myVal[j+1])/2.0;"

2) Will the contents of myVal[] and myNew][] change in further iterations?

No, this represents the converged value (equilibrium/fixpoint).

3) Write the formula for the final value of myNewli] as a function of i and n. In general, this is the value
that we will get if m (= #iterations in sequential for-iter loop) is large enough.

After a sufficiently large number of iterations, the iterated averaging code will converge with myNewli}

=myValli] =i/ (n+1)

2 COMP 322, Spring 2020 (M.Joyner) @



Announcements & Reminders

 Quiz for Unit 2 (topics 2.1 - 2.8) is available on Canvas, due by 11:59pm on Monday, Feb. 10th
« Midterm Exam on Thursday, Feb. 27th at TBD

COMP 322, Spring 2020 (M.Joyner)



HJ code for One-Dimensional Iterative Averaging

1.// Intialize m, n, myVal, newVal

2M=....N=...;

3.float[] myVal = new float[n+2];

4 .float[]] myNew = new float[n+2];

5.forseq(0, m-1, (iter) ->{

6. // Compute MyNew as function of input array MyVal
7. forall(1, n, (j) ->{// Create n tasks

8. myNew([j] = (myVal[j-1] + myVal[j+1])/2.0;

9. });// forall

10. // What is the purpose of line 11 below?

11. float[] temp=myVal; myVal=myNew; myNew=temp;
12.}); /] forseq

COMP 322, Spring 2020 (M.Joyner)



What about Overheads?

e |t is inefficient to create forall iterations in which each iteration (async task) does very little work

 An alternate approach is “iteration grouping” or “loop chunking”
—e.g., replace
forall(0, 99, (i) -> BODY(i)); // 100 tasks
—by
forall(O, 3, (i) ->{ // 4 tasks
// Each task executes a “chunk” of 25 iterations
forseq(25*ii, 25*(ii+1)-1, (i) -> BODY(i));

}); // forall

—This is better, but it's still inconvenient for the programmer to do the “iteration grouping” or “loop
chunking” explicitly

COMP 322, Spring 2020 (M.Joyner)



forallChunked APIs

e forallChunked(int s0O, int e0, int chunkSize,
edu.rice.hj.api.HjProcedure<linteger> body)

e Like forall(int sO, int €0, edu.rice.hj.api.HjProcedure<Integer> body)

e but forallChunked includes chunkSize as the third parameter!
*e.g., replace
forall(O, 99, (i) -> BODY(i)); // 100 tasks
.by
forallChunked(0, 99, 100/4, (i)->BODY(i));

COMP 322, Spring 2020 (M.Joyner)


http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#forallChunked-int-int-int-edu.rice.hj.api.HjProcedure-
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#forallChunked-int-int-int-edu.rice.hj.api.HjProcedure-

1.int nc = numWorkerThreads();

2. .../l Initializations

3.forseq(0, m-1, (iter) ->{

4. /| Compute MyNew as function of input array MyVal
5. forallChunked(1, n, n/nc, (j) ->{ // Create n/nc tasks
6. myNewl[j] = (myVal[j-1] + myVal[j+1])/2.0;

/. }); [/l forallChunked

8. // Swap myVal & myNew;

9. float[] temp=myVal; myVal=myNew; myNew=temp;
10. // myNew becomes input array for next iteration
11.}); // forseq

COMP 322, Spring 2020 (M.Joyner)



Barrier Synchronization: Hello-Goodbye Forall Example (Pseudocode)

forall (0, m - 1, (1) -> {
int sq = 1*1; // NOTE: video used lookup(i1) instead
System.out.println(“Hello from task with square = “ + sq);

+ SQ);

{

System.out.println(“Goodbye from task with square =

});

Sample output for m = 4:
Hello from task with square = 0
Hello from task with square = 1
Goodbye from task with square = 0O
Hello from task with square = 4
Goodbye from task with square = 4
Goodbye from task with square = 1
Hello from task with square =9
Goodbye from task with square = 9

COMP 322, Spring 2020 (M.Joyner) ﬁ/‘?



Hello-Goodbye Forall Example (contd)

forall (0, m - 1, (i) -> {
nt sq = 1*1;
System.out.printiln(“Hello from task with square = “ + sq);

System.out.println(“Goodbye from task with square = “ + sq);

});

« Question: how can we transform this code so as to ensure that all tasks say hello before any tasks say
goodbye?

« Statements in red below will need to be moved to solve this problem

Hello from task with square = 0
Hello from task with square = 1
Goodbye from task with square = 0
Hello from task with square = 4
Goodbye from task with square = 4
Goodbye from task with square = 1
Hello from task with square =9
Goodbye from task with square = 9

COMP 322, Spring 2020 (M.Joyner) %



Hello-Goodbye Forall Example (contd)

forall (0, m - 1, (1) -> {
int sq = 1*;

'f]

System.out.println(“Hello from task with square = “ + sq);

a“ + Sq);

System.out.println(“Goodbye from task with square =

})s
« Question: how can we transform this code so as to ensure that all tasks say hello before any tasks say goodbye?

« Approach 1: Replace the forall loop by two forall loops, one for the hello’s and one for the goodbye’s

— What's the problem here?

1. // APPROACH 1
2. forall (0, m - 1, (1) -> {

3. 1nt sq = 1*1;

4, System.out.println(“Hello from task with square = “ + sq);
5. });

6. forall (0, m - 1, (1) -> {

7. System.out.println(“Goodbye from task with square = “ + sq);
8. 1);

COMP 322, Spring 2020 (M.Joyner)



11

Hello-Goodbye Forall Example (contd)

« Question: how can we transform this code so as to ensure that all tasks say hello before any tasks say
goodbye, without having to change local ?

« Approach 2: insert a “barrier” (“next” statement) between the hello’s and goodbye’s

1. // APPROACH 2
2. forallPhased (0, m - 1, (1) -> {

3. 1nt sq = 1*1; } Phase 0
4. System.out.println(“Hello from task with square = “ + sq);

5. next(); // Barrier

6. System.out.println(“Goodbye from task with square = “ + sq); :|‘ Phase 1
7. 1);

- next -> each forallPhased iteration waits at barrier until all iterations arrive (previous
phase is completed), after which the next phase can start

— Scope of next is the closest enclosing forallPhased statement
— If a forallPhased iteration terminates before executing “next”, then the other iterations don't wait for it

COMP 322, Spring 2020 (M.Joyner)



12

Impact of barrier on scheduling forallPhased iterations

next() = SIG + WAIT
SIG WAIT

=0 //AT
Four WAIT
i=1 //A2
forallPhased o | //
Iterations, i=2 //A3
each with a WAIT ,
next() barrier 1=3 //A4
Phase O Phase 1 time
—
A1 Az As %4
signal edge&& ‘2/

next() operation is next

modeled in the wait edges L// \\\)
A A As Aq

Computation Graph

g(sjlgl;egSSIgna and wait % % % %

COMP 322, Spring 2020 (M.Joyner)



forallPhased API's in HJlib
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html

static void forallPhased(int s0O, int e0,
edu.rice.hj.apt.HjProcedure<java. lang.Integer> body)

static <T> voulud forallPhased(java.lang.Iterable<T> titerable,
edu.rice.hj.apt.HjProcedure<T> body)

static void next()

e NOTE:

— All forallPhased API’s include an implicit finish at the end (just like a regular
forall)

— Calls to next() are only permitted in forallPhased(), not in forall()

13 COMP 322, Spring 2020 (M.Joyner) %


http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#forall-int-int-edu.rice.hj.api.HjProcedure-
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#forall-java.lang.Iterable-edu.rice.hj.api.HjProcedure-
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#next--
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html

14

Observation 1: Scope of synchronization for “next” barrier is its closest
enclosing forallPhased statement

forallPhased (0, m - 1, (1) -> {

println(“Starting forall i1teration

T+ 1);
next(); // Acts as barrtier for forallPhased-t1
forallPhased (0, n - 1, (j) -> {
println(“Hello from task (“ + 1 + “,” + j + “)");
next(); // Acts as barrier for forallPhased-j
println(“Goodbye from task (“ + i + “,” + j + “)");
} // forallPhased-j

next(); // Acts as barrtier for forallPhased-t1

Vo 0 N o O B~ w o=

144

10. pruintln(“Ending forallPhased titerattion
11.}); // forallPhased-1

+ 1);

COMP 322, Spring 2020 (M.Joyner)



15

~N~ O O B~ W N OB

Observation 2: If a forall iteration terminates before “next”, then other iterations do
not wait for it

forallPhased (0, m - 1, (1) -> {
forseq (0, 1, (j) —> {
// forall iteration 1 i1s executing phase ]
System.out.printin("(" + Lt + "," + 3§ + ")");
next();
}); //forseq-]
}¥); //forall-1

Outer forall-i loop has m iterations, 0...m-1
Inner sequential j loop has i+1 iterations, O...i
Line 4 prints (task,phase) = (i, j) before performing a next operation.

Iteration i = 0 of the forall-i loop prints (0, 0), performs a next, and then terminates. Iteration i = 1 of the forall-i
loop prints (1,0), performs a next, prints (1,1), performs a next, and then terminates. And so on.

COMP 322, Spring 2020 (M.Joyner)

/N
D



Barrier Matching for previous example

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7
(A,O) (1|,0) (2|,0) (?|>,0) (a|1,0) (5|>,0) (6|,0) (7',0) Phase 0
. . . nlext ----- nlext ----- nlext ----- nlext ----- nlext ----- nlext ----- nlext ----- nlext
e [teration i=0 of the forallPhased-i | | | | | | | |
| 11 1) G @1 (1) (61) (7.1) Phase 1
Ioop prlnts (0' 0) In Phase O' elnd ----- nlext ----- nlext ----- nlext ----- nlext ----- nlext ----- nlext ----- nlext
| | | |
performs a next, and then ends | 22) (32 (4,2) (;,2) (é,z) (7|,2) Phase 2
. . | | | | | | |
Phase 1 by termlnatlng, end --—-- next ----- next ----- next ----- next ----- next -----next
| | | | | |
o . B3 (43 (B3 (63 (7.3) Phase 3
* [teration i=1 of the forallPhased-i | | | | | |
end ----- next ----- next ----- next ----- next ----- next
° ° |
loop prints (1,0) in Phase 0,  ue 64 64 04 Phase 4
. . | | | | |
performs a next, prints (1,1) in end —— NEXt ——Next - Next ——next
| | | |
Phase 1, performs a next, and L Ga e (7 Phase 5
then ends Phase 2 by el et e e
. . | (6,6) (7.6) Phase 6
termlnatlng' i=0...7 are forall iterations | | |
end ----- next ----- next
oy o . . 1,]) = println outpu | |
* And so on until iteration i=8 ends (1l) = printin outpu o Phase 7
. . xt = barri ti
an empty Phase 8 by terminating e end - nex
end = termination of a forall iteration elnd Phase 8

COMP 322, Spring 2020 (M.Joyner)



Observation 3: Different forallPhased iterations may perform “next” at different
program points

1. forallPhased (0, m-1, (i) -> {

2 if (L%$2==1){// i is odd

3. oddPhase®(1);

4. next();

5. oddPhasel(1); Barriers are not statically

6. } else { // 1 1s even scoped — matching barriers

7 evenPhase®(i): may come from different
. program points, and may even

S next(); be in different methods!

9 evenPhasel(1);

10. } // if-else

11. }); // forall

« Barrier operation synchronizes odd-numbered iterations at line 4 with even-numbered iterations in line 8
« One reason why barriers are “less structured” than finish, async, future

COMP 322, Spring 2020 (M.Joyner)



18

Parallelizing loops in Matrix Multiplication example using forall

1. // Parallel version using forall
. forall(0, n-1, 0, n-1, (i, J) ->{
cliji] = 0;
) ) | |
. forall(0, n-1, 0, n-1, (i, j) = { cli,j] = §<k< afi,k] * blk,]]
forseq(0, n-1, (k) ->{ o
cliji] += alijik] * bIk]l];
});
});

10. // Print first element of output matrix
11. printIn(c[0][0]);

© ® N OO AW N

COMP 322, Spring 2020 (M.Joyner) $§



