
COMP 322: Fundamentals of Parallel Programming

Lecture 13: Iterative Averaging Revisited, SPMD pattern

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 13 February 2020

http://comp322.rice.edu

COMP 322, Spring 2020 (M.Joyner)

Worksheet #12: Parallelism in Java Streams, Parallel Prefix Sums

1. Arrays
2. .asList(“a1", "a2", "b1", "c2", "c1")
3. .parallelStream()
4. .filter(s -> s.startsWith(“c"))
5. .sorted()
6. .map(String::toUpperCase)
7. .forEach(System.out::println);

2

1.What output will the following Java Streams code print?

2.Which stream operation in this example could benefit from a parallel prefix sum implementation, and why?

The filter operation since parallel prefix can be used to compute the indices in the output array

C1
C2 or C2

C1
The sorted() operation is a no-op
if the printing is performed in parallel!

COMP 322, Spring 2020 (M.Joyner)

Recap: Parallel Filter Operation
[Credits: David Walker and Andrew W. Appel (Princeton), Dan Grossman (U. Washington)]

Given an array input, produce an array output containing only elements such that
f(elt) is true, i.e., output =
input.parallelStream().filter(f).toArray()

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

 f: is elt > 10

 output [17, 11, 13, 19, 24]

Parallelizable?
—Finding elements for the output is easy
—But getting them in the right place seems hard

3

COMP 322, Spring 2020 (M.Joyner)

Recap: Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements (can use Java streams)
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector (not available in Java streams)
 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]
3. Parallel map to produce the output (can use Java streams)
 output [17, 11, 13, 19, 24]
  

4

output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){
 if(bits[i]==1)
 output[bitsum[i]-1] = input[i];
}

COMP 322, Spring 2020 (M.Joyner)

One-Dimensional Iterative Averaging Example

• Initialize a one-dimensional array of (n+2) double’s with boundary conditions, myVal[0]
= 0 and myVal[n+1] = 1.

• In each iteration, each interior element myVal[i] in 1..n is replaced by the average of its
left and right neighbors.
—Two separate arrays are used in each iteration, one for old values and the other for
the new values

•After a sufficient number of iterations, we expect each element of the array to
converge to myVal[i] = (myVal[i-1]+myVal[i+1])/2, for all i in 1..n

llustration of an intermediate step for n = 8 (source: Figure 6.19 in Lin-Snyder book)

5

COMP 322, Spring 2020 (M.Joyner)

Iterative Averaging structure is akin to Finite Difference solution
to the One-Dimensional Heat Equation

•In the 1D heat equation, u(j,t) represents the temperature at position j in a 1D object at nth time
step (different use of “n” from our code)

•We can use this principle in both space and time to compute
•u(j,n+1) = f(u(j-1,n), u(j,n), u(j+1,n))

for multiple time steps n until we reach a convergence with an acceptably small error between time
steps
•These algorithms are also referred to as “stencil codes”
•Source: http://en.wikipedia.org/wiki/Finite_difference_method
•See also: https://en.wikipedia.org/wiki/Heat_equation

6

http://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Heat_equation

COMP 322, Spring 2020 (M.Joyner)

HJ code for One-Dimensional Iterative Averaging using nested
forseq-forall structure (Lecture 10)

1. double[] myVal=new double[n+2]; myVal[n+1] = 1;
2.double[] myNew=new double[n+2]; myNew[n+1] = myVal[n+1];
3. forseq(0, m-1, (iter) -> {
4. // Compute MyNew as function of input array MyVal
5. forall(1, n, (j) -> { // Create n tasks
6. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
7. }); // forall
8. // Swap myVal & myNew;
9. temp=myVal; myVal=myNew; myNew=temp;
10. // myNew becomes input array for next iteration
11.}); // for

7

COMP 322, Spring 2020 (M.Joyner)

Converting forseq-forall version into a forall-forseq
version with barriers

1. double[] gVal=new double[n+2]; gVal[n+1] = 1;
2.double[] gNew=new double[n+2];
3. forallPhased(1, n, (j) -> { // Create n tasks
4. // Initialize myVal and myNew as local pointers
5. double[] myVal = gVal; double[] myNew = gNew;
6. forseq(0, m-1, (iter) -> {
7. // Compute MyNew as function of input array MyVal
8. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
9. next(); // Barrier before next iteration of iter loop
10. // Swap local pointers, myVal and myNew
11. double[] temp=myVal; myVal=myNew; myNew=temp;
12. // myNew becomes input array for next iteration
13. }); // forseq
14.}); // forall

8

COMP 322, Spring 2020 (M.Joyner)

General Approach for Iteration Grouping (Loop Chunking)

Without chunking:
for (iter : [0:iterations-1]) {
 forall (j : [1:n])
 myNew[j] = (myVal[j-1] + myVal[j+1])/2;
 Swap myNew and myVal
}
With chunking (replace “forall” by “forall-for”:
for (iter : [0:iterations-1]) {
 forall (g : [0:ng-1])
 for(j : myGroup(g,[1:n],ng)
 myNew[j] = (myVal[j-1] + myVal[j+1])/2;
 Swap myNew and myVal

9

COMP 322, Spring 2020 (M.Joyner)

Example: HJ for One-Dimensional Iterative Averaging with Slide 7
code with chunking (Lecture 11)

1. double[] myVal=new double[n+2]; myVal[n+1] = 1;
2.double[] myNew=new double[n+2]; myNew[n+1] = myVal[n+1];
3. int nc = numWorkerThreads();
4. forseq(0, m-1, (iter) -> {
5. // Compute MyNew as function of input array MyVal
6. forallChunked(1, n, n/nc, (j) -> { // Create nc tasks
7. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
8. }); // forallChunked
9. temp=myVal; myVal=myNew; myNew=temp;// Swap myVal & myNew;
10. // myNew becomes input array for next iteration
11.}); // for

10

COMP 322, Spring 2020 (M.Joyner)

General Approach for Iteration Grouping with Barriers

Barrier-based solution:
// Note that iter-loop is inserted between forall-g and for-j loops
forall (g : [0:ng-1])
 for (iter : [0:iterations-1]) {
 for(j : myGroup(g,[1:n],ng)
 myNew[j] = (myVal[j-1] + myVal[j+1])/2;
 next; // Barrier
 Swap myNew and myVal
 } // for iter

Also referred to as a “single program multiple data” (SPMD) pattern

11

COMP 322, Spring 2020 (M.Joyner)

Chunking forall loop in Slide 8 - inner chunked loop goes inside
forseq-iter loop

1.double[] gVal=new double[n+2]; gVal[n+1] = 1;
2.double[] gNew=new double[n+2];
3.HjRegion1D iterSpace = newRectangularRegion1D(1,n);
4.int nc = numWorkerThreads();
5. forallPhased(0, nc-1, (jj) -> { // Create nc tasks
6. // Initialize myVal and myNew as local pointers
7. double[] myVal = gVal; double[] myNew = gNew;
8. forseq(0, m-1, (iter) -> {
9. forseq(myGroup(jj,iterSpace,nc), (j) -> {
10. // Compute MyNew as function of input array MyVal
11. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
12. }); // forseq
13. next(); // Barrier before executing next iteration of iter loop
14. // Swap local pointers, myVal and myNew
15. double[] temp=myVal; myVal=myNew; myNew=temp;
16. // myNew becomes input array for next iter
17. }); // forseq
18.}); // forall

12

COMP 322, Spring 2020 (M.Joyner)

Single Program Multiple Data (SPMD)

Basic idea
•Run the same code (program) on P workers
•Use the “rank” --- an ID ranging from 0 to (P-1) --- to determine what data is processed by which worker

—Hence, “single-program” and “multiple-data”
—Rank is equivalent to index in a top-level “forall (point[i] : [0:P-1])” loop

• Lower-level programming model than dynamic async/finish parallelism
—Programmer’s code is essentially at the worker level (each forall iteration is like a worker),
—Work distribution is managed by programmer by using barriers and other synchronization constructs
—Harder to program but can be more efficient for restricted classes of applications (e.g. for

OneDimAveraging, but not for NQueens)
•Convenient for hardware platforms that are not amenable to efficient dynamic task parallelism

—General-Purpose Graphics Processing Unit (GPGPU) accelerators
—Distributed-memory parallel machines

13

COMP 322, Spring 2020 (M.Joyner)

Slide 12 viewed as exemplar of SPMD pattern
1. double[] gVal=new double[n+2]; gVal[n+1] = 1;
2.double[] gNew=new double[n+2];
3.HjRegion1D iterSpace = newRectangularRegion1D(1,m);
4.int nc = numWorkerThreads();
5. forallPhased(1, nc, (jj) -> { // Create nc tasks
6. // Initialize myVal and myNew as local pointers
7. double[] myVal = gVal; double[] myNew = gNew;
8. forseq(0, m-1, (iter) -> {
9. forseq(myGroup(jj,iterSpace,nc), (j) -> {
10. // Compute MyNew as function of input array MyVal
11. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
12. }); // forseq
13. next(); // Barrier before executing next iteration of iter loop
14. // Swap local pointers, myVal and myNew
15. double[] temp=myVal; myVal=myNew; myNew=temp;
16. // myNew becomes input array for next iter
17. }); // forseq
18.}); // forAllPhased

14

Instead of async-finish, this SPMD version creates one task per worker, uses myGroup() to
distribute work, and use barriers to synchronize workers.

COMP 322, Spring 2020 (M.Joyner)

Announcements & Reminders

• HW2 is due today by 11:59pm

• HW3 available today, due Friday, March 27th by 11:59pm

• Checkpoint 1 due Friday, February 28th by 11:59pm

• Checkpoint 2 due Wednesday, March 11th by 11:59pm

• Quiz for Unit 3 (topics 3.1 - 3.7) available today, due Feb. 21st by 11:59pm

• Midterm Exam on Thursday, Feb. 27th from 7-9pm in DH McMurtry Aud.

15

