COMP 322: Fundamentals of Parallel Programming

Lecture 16: Pipeline Parallelism, Signal Statement, Fuzzy Barriers

Mack Joyner
mjoyner@rice.edu

http:/comp322.rice.edu

COMP 322 Lecture 16 February 2020 @

http://comp322.rice.edu

Worksheet #15: Reordered Asyncs with One Phaser

Task A4 has been moved up to line 6. Does this change the computation graph in slide 9? If so, draw the new computation graph. If
not, explain why the computation graph is the same.

No, A4 still needs to wait on A2 and A3 to signal before it can start doA4Phase2().

1. fintsh (() -> {

2. ph = newPhaser(SIG_WAIT); // mode i1s SIG_WAIT

3 asyncPhased(ph.inMode(SIG), () -> {

4 // Al (SIG mode)

5. doAlPhasel(); next(); doAlPhase2(); });

0. asyncPhased(ph.inMode(HjPhaserMode.WAIT), () -> {
7 // A4 (WAIT mode)

8 doAd4Phasel(); next(); doAdPhase2(); });

9. asyncPhased(ph.inMode(SIG_WAIT), () -> {

10. // A2 (SIG_WAIT mode)

11. doA2Phasel(); next(); doA2Phase2(); });

12. asyncPhased(ph.inMode(HjPhaserMode.SIG_WAIT), () -> {
13. // A3 (SIG_WAIT mode)

14. doA3Phasel(); next(); doA3Phase2(); });

15.)

COMP 322, Spring 2020 (M.Joyner)

Medical imaging p

New reconstruction methods
— decrease radiation exposure (CT)
— number of samples (MR)

3D/4D image analysis pipeline
— Denoising

— Registration

— Segmentation

Analysis

reconstruction

denoising

— Real-time quantitative cancer S
assessment applications £
Potential: 3
— order-of-magnitude performance
improvement

— power efficiency improvements

— real-time clinical applications and
simulations using patient imaging data

segmentation

Slide credit: NSF Expeditions Center for Domain-Specific Computing (UCLA, Rice, OSU, UCSB)

Pipeline Parallelism: Another Example of Point-to-point
Synchronization

DENOISE |——| REGISTER ——| SEGMENT

« Medical imaging pipeline with three stages
1. Denoising stage generates a sequence of results, one per image.
2. Registration stage’s input is Denoising stage's output.
3. Segmentation stage's input is Registration stage'’s output.

« Even though the processing is sequential for a single image, pipeline
parallelism can be exploited via point-to-point synchronization between
neighboring stages

COMP 322, Spring 2020 (M.Joyner)

General structure of a One-Dimensional Pipeline

Input sequence

dodgd-dedsdydsdrdydyy

Assuming that the inputs dg, d4, . . . arrive sequentially, pipeline parallelism can
be exploited by enabling task (stage) P; to work on item dy-; when task (stage)
Py is working on item d.

COMP 322, Spring 2020 (M.Joyner)

Timing Diagram for One-Dimensional Pipeline

p—1 n
<€ >
Pg do | dy | dy | d3 | dg | ds | dg
/
—
I Pg do | dy | dy | d3 | dy | ds | de | d7
T, Point-to-point /1
© Py synchronization /do dy | dy | d3 | dy | ds | dg | dy | dg
~— across stages
® P /;10 dy | dy | d3 | dy | ds | dg | d7 | dg | dg
% Ps /do dy | dy | d3 | dy | ds| dg | d7 | dg| dg
whd
g P4 /do dy | dy | d3 | dy | ds | dg | dy | dg | dg
= P5 /do dy | dy | d3 | dy | ds | dg | dy | dg | dg
Q
Q. P, /do dy | dy | d3 | dq | ds| dg | dy|dg| dg
Q.
o Py do | dy | dy | d3 | dyq | ds | dg | d7 | dg | do :
A n data items
Py |dyl|d|dy|dy|dy|ds|dg|ds|dg]| do
>
Time

Horizontal axis shows progress of time from left to right, and vertical axis shows which
data item is being processed by which pipeline stage at a given time.

COMP 322, Spring 2020 (M.Joyner)

Complexity Analysis of One-Dimensional Pipeline

Assume
— n = number of items in input sequence
— p = number of pipeline stages
— each stage takes 1 unit of time to process a single data item

WORK = nxp is the total work for all data items
CPL =n+p - 1isthe critical path length of the pipeline
Ideal parallelism, PAR = WORK/CPL =np/(n+p - 1)

Boundary cases
—p=1->PAR=n/(n+1-1) =1
—n=1->PAR=p/(1+p—-1)=1
—n=p->PAR=p/(2-1/p) = p/2
—n>»p->PAR=Dp

COMP 322, Spring 2020 (M.Joyner)

Using a phaser to implement pipeline parallelism
(unbounded buffer)

1. asyncPhased(ph.inMode(?), () -> {

2 for (int 1 = 0; 1 < rounds; i1++) {
3

4 buffer.insert(..);

5.

6 }

7. });

8

9. asyncPhased(ph.inMode(?), () -> {

10. for (int 1 = 0; 1 < rounds; i1++) {
11.

12. buffer.remove(..);

13.

14. }

15. });

COMP 322, Spring 2020 (M.Joyner)

Signal statement & Fuzzy barriers

 When atask T performs a signal operation, it notifies all the phasers it is registered on that it has
completed all the work expected by other tasks (“shared” work) in the current phase.

* |Later, when T performs a next operation, the next degenerates to a wait since a signal has already
been performed in the current phase.

* The execution of “local work” between signal and next is overlapped with the phase transition
(referred to as a “split-phase barrier” or “fuzzy barrier”)

. forall (point[i] : [0:1]) {
A(1); // Phase 0

if (i==0) { signal; B(i); }
next; // Barrier

C(t); // Phase 1

if (i==1) { D(1); }

N OO O B W N

COMP 322, Spring 2020 (M.Joyner)

10

Another Example of a Split-Phase Barrier using the Signal

Statement
1. finish(() -> {
2 final HjPhaser ph = newPhaser(SIG_WAIT);
3 asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T1
4. a=...3 // Shared work in phase 0
5. signal(); // Signal completion of a's computation
6 b = ... ; // Local work in phase 0
7 next(); // Barrier -- wailt for T2 to compute x
8. b = f(b,x); // Use x computed by T2 in phase 0
9. });
10. asyncPhased(ph.inMode(SIG _WAIT), () -> { // Task T2
11. X = ... 3 // Shared work in phase 0
12. signal(); // Sitgnal completion of x's computattion
13. Y = o0 // Local work in phase 0
14. next(); // Barrier -- wailt for Tl to compute a
15. y = f(y,a); // Use a computed by Tl in phase 0
16. })

17:}); }/ finish

COMP 322, Spring 2020 (M.Joyner)

Computation Graph for Split-Phase Barrier Example
(without async-finish nodes and edges)

4 > 5-signa| »| 6 y /-wait y 8
N\ T
D
ph.next | ph.next
-start(0->1) -end(0->1)
1 "
/
II
Il
/ <
11 " 12-signal — 13 " 14-wait " 15
spawn continue signal wait join
_} S e ——) > _______ >

COMP 322, Spring 2020 (M.Joyner)

12

Full Computation Graph for Split-Phase Barrier Example

2

17-end-finish

COMP 322, Spring 2020 (M.Joyner)

S —— WA ¢ | (o]¢
g - ,z/
\ L
41 >___) 5-signal | 6 tad | 7-wait
\\\ N 7 =
> AN o0
el 4 L
XY ph.next | ph.next
-start(0->1) -end(0->1)
1 "
II
4
Il
/ <
11 " 12-signal — 13 " 14-wait
spawn continue signal wait
ﬁ > e s s) >

13

Announcements & Reminders

Quiz for Unit 3 (topics 3.1 - 3.7) due today by 11:59pm

Quiz for Unit 4 (topics 4.1 - 4.5) available today, due Friday, March 6th by
11:59pm

Midterm Exam on Thursday, Feb. 27th from 7-9pm in DH McMurtry Aud.
(no lab)

Midterm Review on Monday

HW3 due Friday, March 27th by 11:59pm (written part due with CP #3)
- Checkpoint 1 due Friday, February 28th by 11:59pm

- Checkpoint 2 due Wednesday, March 11th by 11:59pm

COMP 322, Spring 2020 (M.Joyner)

