
COMP 322: Fundamentals of Parallel Programming

Lecture 19: Critical Sections and the Isolated Construct

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 19 February 2020

http://comp322.rice.edu

COMP 322, Spring 2020 (M.Joyner)

10. finish {
11. async { S1; }
12. finish {
13. async {
14. finish {
15. async { S2; }
16. S3;
17. }
18. S4;
19. }
20. async {
21. async { S5; }
22. S6;
23. }
24. S7;
25. }
26. S8;
27. }

Worksheet #18: Cooperative vs Blocking Runtime scheduler

2

Assume that creating an async causes the task to be pushed into the
work queue for execution by any available idle thread.
Fill the following table for the program shown on the right by adding
the appropriate number of threads required to execute the program.
For the minimum or maximum numbers, your answer must represent a
schedule where at some point during the execution all threads are
busy executing a task or blocked on some synchronization constraint.

Minimum number
of threads

Maximum number
of threads

Cooperative
Runtime 1 ?

Blocking Runtime ? ?

COMP 322, Spring 2020 (M.Joyner)

Worksheet #18: Cooperative vs Blocking Runtime scheduler

3

Maximum
number of
threads

Cooperative
Runtime 6

Blocking
Runtime 6

Minimum
number of
threads

Cooperative
Runtime 1

Blocking
Runtime ?

Maximum threads: If we proceed through the graph in
top-down manner incrementally, how many
maximum leaf nodes can we have?

10. finish {
11. async { S1; }
12. finish {
13. async {
14. finish {
15. async { S2; }
16. S3;
17. }
18. S4;
19. }
20. async {
21. async { S5; }
22. S6;
23. }
24. S7;
25. }
26. S8;
27. }

COMP 322, Spring 2020 (M.Joyner)

Worksheet #18: Cooperative vs Blocking Runtime scheduler

4

Minimum
number of
threads

Blocking
Runtime 3

ready
queue

11
13
20
15
21

10. finish {
11. async { S1; }
12. finish {
13. async {
14. finish {
15. async { S2; }
16. S3;
17. }
18. S4;
19. }
20. async {
21. async { S5; }
22. S6;
23. }
24. S7;
25. }
26. S8;
27. }

COMP 322, Spring 2020 (M.Joyner)

Formal Definition of Data Races (Recap)

 Formally, a data race occurs on location L in a program execution with
computation graph CG if there exist steps (nodes) S1 and S2 in CG such that:

1. S1 does not depend on S2 and S2 does not depend on S1 i.e., there is no
path of dependence edges from S1 to S2 or from S2 to S1 in CG, and

2. Both S1 and S2 read or write L, and at least one of the accesses is a write.

 However, there are many cases in practice when two tasks may legitimately
need to perform conflicting accesses to shared locations without incurring
data races

— How should conflicting accesses be handled in general, when outcome may
be nondeterministic?

⇒ Focus of Module 2: “Concurrency” (nondeterministic parallelism)

5

COMP 322, Spring 2020 (M.Joyner)

Example of two tasks performing conflicting accesses --- need for
“mutual exclusion”

1. class DoublyLinkedListNode {

2. DoublyLinkedListNode prev, next;

3. . . .

4. void delete() {

5. { // start of desired mutual exclusion region

6. this.prev.next = this.next;

7. this.next.prev = this.prev;

8. } // end of desired mutual exclusion region

9. . . . // remaining code in delete() that does not need mutual exclusion

10. }

11. } // DoublyLinkedListNode

12. . . .

13. static void deleteTwoNodes(final DoublyLinkedListNode L) {

14. finish(() -> {

15. DoublyLinkedListNode second = L.next;

16. DoublyLinkedListNode third = second.next;

17. async(() -> { second.delete(); });

18. async(() -> { third.delete(); }); // conflicts with previous async

19. });

20. }

6

COMP 322, Spring 2020 (M.Joyner)

How to enforce mutual exclusion?

• The predominant approach to ensure mutual exclusion proposed many years
ago is to enclose the code region in a critical section.

—“In concurrent programming a critical section is a piece of code that accesses
a shared resource (data structure or device) that must not be concurrently
accessed by more than one thread of execution. A critical section will usually
terminate in fixed time, and a thread, task or process will have to wait a fixed
time to enter it (aka bounded waiting). Some synchronization mechanism is
required at the entry and exit of the critical section to ensure exclusive use, for
example a semaphore.”

— Source: http://en.wikipedia.org/wiki/Critical_section

7

http://en.wikipedia.org/wiki/Critical_section

COMP 322, Spring 2020 (M.Joyner)

HJ isolated construct
isolated (() -> <body>);

• Isolated construct identifies a critical section

• Two tasks executing isolated constructs are guaranteed to perform them in mutual exclusion
!Isolation guarantee applies to (isolated, isolated) pairs of constructs, not to (isolated, non-isolated) pairs of

constructs

• Isolated constructs may be nested

— An inner isolated construct is redundant

• Blocking parallel constructs are forbidden inside isolated constructs

—Isolated constructs must not contain any parallel construct that performs a blocking operation e.g., finish,
future get, next

—Non-blocking async operations are permitted, but isolation guarantee only applies to creation of async, not to
its execution

• Isolated constructs can never cause a deadlock

— Other techniques used to enforce mutual exclusion (e.g., locks — which we will learn later) can lead to a
deadlock, if used incorrectly

8

COMP 322, Spring 2020 (M.Joyner)

Use of isolated to fix previous example with conflicting accesses
1. class DoublyLinkedListNode {
2. DoublyLinkedListNode prev, next;
3. . . .
4. void delete() {
5. isolated(() -> { // start of desired mutual exclusion region
6. this.prev.next = this.next;
7. this.next.prev = this.prev;
8. }); // end of desired mutual exclusion region
9. . . . // other code in delete() that does not need mutual exclusion
10. }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(final DoublyLinkedListNode L) {
14. finish(() -> {
15. DoublyLinkedListNode second = L.next;
16. DoublyLinkedListNode third = second.next;
17. async(() -> { second.delete(); });
18. async(() -> { third.delete(); }); // conflicts with previous async
19. });
20. }

9

COMP 322, Spring 2020 (M.Joyner)

Exercise

1. finish(() -> {
2. for (int i = 0; i < 5; i++) {
3. async(() -> {
4. doWork(2);
5. isolated(() -> { doWork(1); });
6. doWork(2);
7. }); // async
8. } // for
9. }); // finish

10

Compute the WORK and CPL metrics for this program with a global isolated construct.

COMP 322, Spring 2020 (M.Joyner)

Serialized Computation Graph for Isolated Constructs

• Model each instance of an isolated construct as a distinct step (node) in the CG.

• Need to reason about the order in which interfering isolated constructs are executed
— Complicated because the order of isolated constructs may vary from execution to execution

• Introduce Serialized Computation Graph (SCG) that includes a specific ordering of all
interfering isolated constructs.

— SCG consists of a CG with additional serialization edges.
— Each time an isolated step, S′, is executed, we add a serialization edge from S to S′ for each

prior “interfering” isolated step, S
– Two isolated constructs always interfere with each other
– Interference of “object-based isolated” constructs depends on intersection of object sets
– Serialization edge is not needed if S and S’ are already ordered in CG

— An SCG represents a set of schedules in which all interfering isolated constructs execute in
the same order.

11

COMP 322, Spring 2020 (M.Joyner)

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Serialization edge v10: isolated { x ++; y = 10; }
v11: isolated { x++; y = 11; }
v16: isolated { x++; y = 16; }

Example of Serialized Computation Graph with Serialization Edges
for v10-v16-v11 order

 Data race definition can be applied to Serialized Computation Graphs (SCGs) just like regular CGs

12

— Need to consider all possible orderings of interfering isolated constructs to establish data race freedom

COMP 322, Spring 2020 (M.Joyner)

Object-based isolation

isolated(obj1, obj2, …, () -> <body>)

• In this case, programmer specifies list of objects for which isolation is required

• Mutual exclusion is only guaranteed for instances of isolated constructs that
have a common object in their object lists

—Serialization edges are only added between isolated steps with at least one
common object (non-empty intersection of object lists)

—Standard isolated is equivalent to “isolated(*)” by default i.e., isolation across
all objects

• Inner isolated constructs are redundant — they are not allowed to “add” new
objects

13

COMP 322, Spring 2020 (M.Joyner)

1. class DoublyLinkedListNode {
2. DoublyLinkedListNode prev, next;
3. . . .
4. void delete() {
5. isolated(?, ?,…, () -> { // object-based isolation
6. this.prev.next = this.next;
7. this.next.prev = this.prev;
8. });
9. . . .
10. }
11. } // DoublyLinkedListNode
12. . . .
13. static void deleteTwoNodes(final DoublyLinkedListNode L) {
14. finish(() -> {
15. DoublyLinkedListNode second = L.next;
16. DoublyLinkedListNode third = second.next;
17. async(() -> { second.delete(); });
18. async(() -> { third.delete(); });
19. });
20. }

DoublyLinkedListNode Example revisited with Object-Based Isolation

14

COMP 322, Spring 2020 (M.Joyner)

Pros and Cons of Object-Based Isolation

• Pros
—Increases parallelism relative to critical section approach
—Simpler approach than “locks” (which we will learn later)
—Deadlock-freedom property is still guaranteed

• Cons
—Programmer needs to worry about getting the object list right
—Objects in object list can only be specified at start of the isolated construct
—Large object lists can contribute to large overheads

15

COMP 322, Spring 2020 (M.Joyner)

Announcements & Reminders

•HW3 CP1 is now due Saturday, Feb 29th at 11:59pm (24-hour extension)

•Midterm exams should be fully graded by Friday, March 6th

•Reserve the right to curve final grades up!

16

