
COMP 322: Fundamentals of Parallel Programming

Lecture 22: Actors (continued)

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 22 March 2020

http://comp322.rice.edu

COMP 322, Spring 2020 (M.Joyner)

Worksheet #21: Interaction between finish and actors
What output will be printed if the end-finish operation from slide 15 is moved from line 13 to line 11 as shown below?

1. finish(() -> {
2. int threads = 4;
3. int numberOfHops = 10;
4. ThreadRingActor[] ring = new ThreadRingActor[threads];
5. for(int i=threads-1;i>=0; i--) {
6. ring[i] = new ThreadRingActor(i);
7. ring[i].start(); // like an async
8. if (i < threads - 1) {
9. ring[i].nextActor(ring[i + 1]);
10. } }
11. }); // finish
12.ring[threads-1].nextActor(ring[0]);
13.ring[0].send(numberOfHops);
14. 

2

Deadlock (no output): the end-finish
operation in line 11 waits for all the
actors started in line 7 to terminate,
but the actors are waiting for the
message sequence initiated in line 13
before they call exit().

COMP 322, Spring 2020 (M.Joyner)

Announcements

•Checkpoint #2 for Homework 3 is now due Thursday, March 12th at 11:59pm (24-hour extension).
•The entire written + programming homework (Checkpoint #3) is due by Friday, March 27th.
•Quiz for Unit 5 will be in class on Wednesday, March 11th
•The registrar has announced the schedule for the COMP 322 final exam:

—6-MAY-2020 (Wednesday)
—9:00AM - 12:00PM
—Location TBD

•Scope of final exam (Exam 2) will be limited to Lectures 19 - 38

3

COMP 322, Spring 2020 (M.Joyner)

Recap of Actors
! Rely on asynchronous messaging
! Message are sent to an actor using its send() method
! Messages queue up in the mailbox
! Messages are processed by an actor after it is started
! Messages are processed asynchronously

—one at a time
—using the body of process()

4

COMP 322, Spring 2020 (M.Joyner)

Simple Pipeline using Actors

5

Stage-1

Filter
even

length
strings

Stage-2

Filter
lowercase

strings

Stage-3

Print results

A
Simple
pipeline
with
3
stages

Simple
pipeline
with
stages

pipeline
with
stages

COMP 322, Spring 2020 (M.Joyner)

Sieve of Eratosthenes using Actors

6

COMP 322, Spring 2020 (M.Joyner)

Limitations of Actor Model
! Deadlocks possible

—Occurs when all started (but non-terminated) actors have empty mailboxes
! Data races possible when messages include shared objects
! Simulating synchronous replies requires some effort

—e.g., does not support addAndGet()
! Implementing truly concurrent data structures is hard

—No parallel reads, no reductions/accumulators
! Difficult to achieve global consensus

—Finish and barriers not supported as first-class primitive

7

COMP 322, Spring 2020 (M.Joyner)

Implementing an Unbounded Buffer using Actors

8

COMP 322, Spring 2020 (M.Joyner)

Unbounded Buffer Actor Interaction Diagram

9

COMP 322, Spring 2020 (M.Joyner)

Unbounded Buffer Actor Interaction Diagram (cont.)

10

COMP 322, Spring 2020 (M.Joyner)

Exercise: Is Main Actor needed for Producer-Consumer model?
Under which of the following scenarios is a main actor needed to model producer-
consumer relationship with an unbounded buffer? Assume Producer(s) have access to
Consumer list.

! 1 producer, 1 consumer
! 1 producer, many consumers
! Many producers, 1 consumer
! Many producers, many consumers

Under which of those scenarios is having a main actor more efficient?

11

COMP 322, Spring 2020 (M.Joyner)

Pipeline and Actors

Pipelined Parallelism:
! Each stage can be represented as an actor
! Stages need to ensure ordering of messages

while processing them
! Slowest stage is a throughput bottleneck

12

COMP 322, Spring 2020 (M.Joyner)

Motivation for Parallelizing Actors

Pipelined Parallelism:
! Reduce effects of slowest stage by introducing

task parallelism.
! Increases the throughput.

13

