COMP 322: Fundamentals of Parallel Programming

Lecture 22: Actors (continued)

Mack Joyner
mjoyner@rice.edu

http:/comp322.rice.edu

COMP 322 Lecture 22 March 2020 @

http://comp322.rice.edu

Worksheet #21: Interaction between finish and actors

What output will be printed if the end-finish operation from slide 15 is moved from line 13 to line 11 as shown below?

1. finish(() -> {

2 int threads = 4;

3 int numberOfHops = 10;

4 ThreadRingActor[] ring = new ThreadRingActor[threads];

5. for(int 1=threads-1;1>=0; 1--) {

6 ring[1] = new ThreadRingActor(1i);

7 ring[i].start(); // like an async Deadlock (no output): the end-finish
8 1f (1 < threads - 1) { operation in line 11 waits for all the
9 ring[i].nextActor(ring[i + 11); actors started in line 7 to terminate,
10, - but the actors are waiting for the

message sequence initiated in line 13

11. }); // finish before they call exit().

12.ring[threads-1].nextActor(ring[0]);
13.ring[0].send(numberOfHops) ;
14.

COMP 322, Spring 2020 (M.Joyner)

Announcements

» Checkpoint #2 for Homework 3 is now due Thursday, March 12th at 11:59pm (24-hour extension).
e The entire written + programming homework (Checkpoint #3) is due by Friday, March 27th.
e Quiz for Unit 5 will be in class on Wednesday, March 11th

e The registrar has announced the schedule for the COMP 322 final exam:
—6-MAY-2020 (Wednesday)
—9:00AM - 12:00PM
—Location TBD

« Scope of final exam (Exam 2) will be limited to Lectures 19 - 38

COMP 322, Spring 2020 (M.Joyner) %

Recap of Actors

Rely on asynchronous messaging

Message are sent to an actor using its send () method
Messages queue up in the mailbox

Messages are processed by an actor after it is started
Messages are processed asynchronously

—one at a time

—using the body of process ()

mallbox

. &
N

>

N g™
S
/

3O

Loeal process
ocal state ,ne message

at a time

COMP 322, Spring 2020 (M.Joyner)

Simple Pipeline using Actors

A

Simple

pi_peline Simple

with pipeline pipeline
3 with with
stages stages stages

COMP 322, Spring 2020 (M.Joyner)

Sieve of Eratosthenes using Actors

—
2
> > > - - - .
=N RN
4
5 5 5
> — > >
6
—1 2 | 3 |1 s 7 11
> — > >
e
9 9
10
>
11 11 11 11 11
S | S, b > [—>

COMP 322, Spring 2020 (M.Joyner)

Limitations of Actor Model

* Deadlocks possible

—OQOccurs when all started (but non-terminated) actors have empty mailboxes
» Data races possible when messages include shared objects
» Simulating synchronous replies requires some effort

—e.g., does not support addAndGet()
* Implementing truly concurrent data structures is hard

—No parallel reads, no reductions/accumulators
* Difficult to achieve global consensus
—Finish and barriers not supported as first-class primitive

COMP 322, Spring 2020 (M.Joyner)

Implementing an Unbounded Buffer using Actors

2[5]7]3/6]7]

COMP 322, Spring 2020 (M.Joyner)

Unbounded Buffer Actor Interaction Diagram

1. Determine nevﬂtem required

2. Request Data from
an-idle producer

3. Produ Data

4. Send newily.produced data

5. Store data |tt¢n in buffer

COMP 322, Spring 2020 (M.Joyner)

Unbounded Buffer Actor Interaction Diagram (cont.)

1. Retrieve\data item
from bufter

2. SendData to an idle
consumer

3. Con -°~ Data

3. Notify master c
becomingidle

4. Store idle consumer locally
for future yse

COMP 322, Spring 2020 (M.Joyner)

11

Exercise: Is Main Actor needed for Producer-Consumer model?

Under which of the following scenarios is a main actor needed to model producer-
consumer relationship with an unbounded buffer? Assume Producer(s) have access to

Consumer list.

* 1 producer, 1 consumer
* 1 producer, many consumers

 Many producers, 1 consumer
 Many producers, many consumers

Under which of those scenarios is having a main actor more efficient?

COMP 322, Spring 2020 (M.Joyner)

12

Pipeline and Actors

Pipelined Parallelism:
 Each stage can be represented as an actor

» Stages need to ensure ordering of messages
while processing them

» Slowest stage is a throughput bottleneck

—

—

COMP 322, Spring 2020 (M.Joyner)

longer time

Motivation for Parallelizing Actors

Pipelined Parallelism: -

* Reduce effects of slowest stage by introducing
task parallelism. H -

* Increases the throughput. i

shorter time

13 COMP 322, Spring 2020 (M.Joyner)

