
COMP 322: Fundamentals of Parallel Programming

Lecture 24: Java Threads,Java synchronized statement

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 24 March 2020

http://comp322.rice.edu

COMP 322, Spring 2020 (M.Joyner)

Introduction to Java Threads and the java.lang.Thread class

• Execution of a Java program begins with an instance of Thread created by the
Java Virtual Machine (JVM) that executes the program’s main() method.

• Parallelism can be introduced by creating additional instances of class Thread
that execute as parallel threads.

2

A lambda can be passed
as a Runnable

COMP 322, Spring 2020 (M.Joyner)

start() and join() methods

• A Thread instance starts executing when its start() method is invoked
— start() can be invoked at most once per Thread instance
— As with async, the parent thread can immediately move to the next statement after invoking

t.start()

• A t.join() call forces the invoking thread to wait till thread t completes.
— Lower-level primitive than finish since it only waits for a single thread rather than a collection

of threads
— No restriction on which thread performs a join on which thread, so it is possible to create a

deadlock cycle using join() even when there are no data races
– Declaring thread references as final does not help because the new() and start()

operations are separated for threads (unlike futures, where they are integrated)

3

COMP 322, Spring 2020 (M.Joyner)

1. // Start of main thread

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. Thread t1 = new Thread(() -> {

4. // Child task computes sum of lower half of array

5. for(int i=0; i < X.length/2; i++) sum1 += X[i];

6. });

7. t1.start();

8. // Parent task computes sum of upper half of array

9. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];
10. // Parent task waits for child task to complete (join)

11. t1.join();

12. return sum1 + sum2;

Two-way Parallel Array Sum
using Java Threads

4

COMP 322, Spring 2020 (M.Joyner)

1. // Start of Task T0 (main program)

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. finish(() -> {

4. async(() -> {

5. // Child task computes sum of lower half of array

6. for(int i=0; i < X.length/2; i++) sum1 += X[i];

7. });

8. // Parent task computes sum of upper half of array

9. for(int i=X.length/2; i < X.length; i++) sum2 += X[i];
10. });

11. // Parent task waits for child task to complete (join)

12. return sum1 + sum2;

Compare with Two-way Parallel Array Sum
using HJ-Lib’s finish & async API’s

5

COMP 322, Spring 2020 (M.Joyner)

HJlib runtime uses Java threads as workers

• HJlib runtime creates a small number of worker threads in a thread pool, typically one per core

• Workers push async’s/continuations into a logical work queue

• when an async operation is performed

• when an end-finish operation is reached

• Workers pull task/continuation work item when they are idle

6

COMP 322, Spring 2020 (M.Joyner)

Objects and Locks in Java — synchronized statements and methods

• Every Java object has an associated lock acquired via:
— synchronized statements
– synchronized(foo) { // acquire foo’s lock 

 // execute code while holding foo’s lock 
} // release foo’s lock

— synchronized methods
– public synchronized void op1() { // acquire ‘this‘ lock 

 // execute method while holding ‘this’ lock 
} // release ‘this’ lock

• Java language does not enforce any relationship between the object used for locking and objects
accessed in isolated code

— If same object is used for locking and data access, then the object behaves like a monitor

• Locking and unlocking are automatic
— Locks are released when a synchronized block exits

• By normal means: end of block reached, return, break
• When an exception is thrown and not caught

7

COMP 322, Spring 2020 (M.Joyner)

Locking guarantees in Java

• It is preferable to use java.util.concurrent.atomic or HJlib isolated constructs,
since they cannot deadlock

• Locks are needed for more general cases. Basic idea is for JVM to implement
synchronized(a) <stmt> as follows:

1. Acquire lock for object a
2. Execute <stmt>
3. Release lock for object a

• The responsibility for ensuring that the choice of locks correctly implements
the semantics of isolation lies with the programmer.

• The main guarantee provided by locks is that only one thread can hold a given
lock at a time, and the thread is blocked when acquiring a lock if the lock is
unavailable.

8

COMP 322, Spring 2020 (M.Joyner)

Deadlock example with Java synchronized statement

• The code below can deadlock if leftHand() and rightHand() are called concurrently from
different threads

— Because the locks are not acquired in the same order

 public class ObviousDeadlock {
 . . .
 public void leftHand() {
 synchronized(lock1) {
 synchronized(lock2) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 }

9

 public void rightHand() {
 synchronized(lock2) {
 synchronized(lock1) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 }

COMP 322, Spring 2020 (M.Joyner)

Deadlock avoidance in HJ with object-based isolation

• HJ implementation ensures that all locks are acquired in the same order

• ==> no deadlock

 public class ObviousDeadlock {
 . . .
 public void leftHand() {
 isolated(lock1,lock2) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }

10

 public void rightHand() {
 isolated(lock2, lock1) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }

COMP 322, Spring 2020 (M.Joyner)

Dynamic Order Deadlocks
• There are even more subtle ways for threads to deadlock due to inconsistent lock ordering

— Consider a method to transfer a balance from one account to another:
public class SubtleDeadlock {
 public void transferFunds(Account from,
 Account to,
 int amount) {
 synchronized (from) {
 synchronized (to) {
 from.subtractFromBalance(amount);
 to.addToBalance(amount);
 }
 }
 }
 }

— What if one thread tries to transfer from A to B while another tries to transfer from B to A ?
Inconsistent lock order again – Deadlock!

11

COMP 322, Spring 2020 (M.Joyner)

Avoiding Dynamic Order Deadlocks
• The solution is to induce a lock ordering
— Here, uses an existing unique numeric key, acctId, to establish an order

public class SafeTransfer {

 public void transferFunds(Account from, Account to, int amount) {
 Account firstLock, secondLock; 

 if (fromAccount.acctId == toAccount.acctId) 
 throw new Exception(“Cannot self-transfer”); 
 else if (fromAccount.acctId < toAccount.acctId) { 
 firstLock = fromAccount; 
 secondLock = toAccount; 
 } 
 else { 
 firstLock = toAccount; 
 secondLock = fromAccount; 
 } 
 synchronized (firstLock) {

 synchronized (secondLock) {
 from.subtractFromBalance(amount);

 to.addToBalance(amount);

 }
 }

 } 
 }

12

COMP 322, Spring 2020 (M.Joyner)

Java’s Object Locks are Reentrant
• Locks are granted on a per-thread basis

— Called reentrant or recursive locks
— Promotes object-oriented concurrent code

• A synchronized block means execution of this code requires the current thread to hold this lock
— If it does — fine
— If it doesn’t — then acquire the lock

• Reentrancy means that recursive methods, invocation of super methods, or local callbacks, don’t deadlock
 public class Widget {

 public synchronized void doSomething() { ... }

 }

 public class LoggingWidget extends Widget {

 public synchronized void doSomething() {

 Logger.log(this + ": calling doSomething()");

 super.doSomething(); // Doesn't deadlock!  
 } 
 }

13

COMP 322, Spring 2020 (M.Joyner)

Worksheet #24: Java Threads and Data Races

1) Write a sketch of the pseudocode for a Java threads program that exhibits a data race using start()
and join() operations.

2) Write a sketch of the pseudocode for a Java threads program that exhibits a data race using
synchronized statements

14

