
COMP 322: Fundamentals of Parallel Programming

Lecture 25: Java Threads,Java synchronized statement

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 25 March 2020

http://comp322.rice.edu

COMP 322, Spring 2020 (M.Joyner)

One possible solution to Worksheet #24

1) Write a sketch of the pseudocode for a Java threads program that exhibits a data race using start() and
join() operations.

1. // Start of thread t0 (main program)

2. sum1 = 0; sum2 = 0; // Assume that sum1 & sum2 are fields

3. // Compute sum1 (lower half) and sum2 (upper half) in parallel

4. final int len = X.length;

5. Thread t1 = new Thread(() -> {

6. for(int i=0 ; i < len/2 ; i++) sum1+=X[i];});

7. t1.start();

8. Thread t2 = new Thread(() -> {

9. for(int i=len/2 ; i < len ; i++) sum2+=X[i];});

10. t2.start();

11. int sum = sum1 + sum2; //data race between t0 & t1, and t0 & t2

12. t1.join(); t2.join();

2

COMP 322, Spring 2020 (M.Joyner)

One possible solution to Worksheet #24 (contd)

2) Write a sketch of the pseudocode for a Java threads program that exhibits a data race using
synchronized statements.

1. // Start of thread t0 (main program)

2. sum = 0; // static int field

3. Object a = new ... ;

4. Object b = new ... ;

5. Thread t1 = new Thread(() ->

6. { synchronized(a) { sum++; } });

7. Thread t2 = new Thread(() ->

8. { synchronized(b) { sum++; } });

9. t1.start();

10. t2.start(); // data race between t1 & t2

11. t1.join(); t2.join();

3

COMP 322, Spring 2020 (M.Joyner)

Unit 7.1: Java Threads (Recap)

• Execution of a Java program begins with an instance of Thread created by the
Java Virtual Machine (JVM) that executes the program’s main() method.

• Parallelism can be introduced by creating additional instances of class Thread
that execute as parallel threads.

4

A lambda can be
passed as a Runnable

COMP 322, Spring 2020 (M.Joyner)

Unit 7.2: Objects and Locks in Java ---  
synchronized statements and methods (Recap)

• Every Java object has an associated lock acquired via:
— synchronized statements

– synchronized(foo) { // acquire foo’s lock 
 // execute code while holding foo’s lock 
} // release foo’s lock

— synchronized methods
– public synchronized void op1() { // acquire ‘this‘ lock 

 // execute method while holding ‘this’ lock 
} // release ‘this’ lock

• Java language does not enforce any relationship between object used for locking and objects accessed in
isolated code

— If same object is used for locking and data access, then the object behaves like a monitor

• Locking and unlocking are automatic
— Locks are released when a synchronized block exits

• By normal means: end of block reached, return, break
• When an exception is thrown and not caught

5

COMP 322, Spring 2020 (M.Joyner)

Implementation of Java synchronized statements/methods

• Every object has an associated lock

• “synchronized” is translated to matching monitorenter and monitorexit
bytecode instructions for the Java virtual machine

— monitorenter requests “ownership” of the object’s lock
— monitorexit releases “ownership” of the object’s lock

• If a thread performing monitorenter does not gain ownership of the lock
(because another thread already owns it), it is placed in an unordered “entry
set” for the object’s lock

6

COMP 322, Spring 2020 (M.Joyner)

Figure source: http://www.artima.com/insidejvm/ed2/images/fig20-1.gif

Monitors – a Diagrammatic summary

7

http://www.artima.com/insidejvm/ed2/images/fig20-1.gif
http://www.artima.com/insidejvm/ed2/images/fig20-1.gif

COMP 322, Spring 2020 (M.Joyner)

What if you want to wait for shared state to satisfy a desired
property? (Bounded Buffer Example)

1. public synchronized void insert(Object item) { // producer
2. // TODO: wait till count < BUFFER SIZE
3. ++count;
4. buffer[in] = item;
5. in = (in + 1) % BUFFER SIZE;
6. // TODO: notify consumers that an insert has been performed
7. }

9. public synchronized Object remove() { // consumer
10. Object item;
11. // TODO: wait till count > 0
12. --count;
13. item = buffer[out];
14. out = (out + 1) % BUFFER SIZE;
15. // TODO: notify producers that a remove() has been performed
16. return item;
17.}

8

COMP 322, Spring 2020 (M.Joyner)

The Java wait() Method

• A thread can perform a wait() method on an object that it owns:
1. the thread releases the object lock
2. thread state is set to blocked
3. thread is placed in the wait set

• Causes thread to wait until another thread invokes the notify() method or the notifyAll() method for
this object.

• Since interrupts and spurious wake-ups are possible, this method should always be used in a loop
e.g.,

 synchronized (obj) {
 while (<condition does not hold>)
 obj.wait();
 ... // Perform action appropriate to condition
 }

• Java’s wait-notify is related to “condition variables” in POSIX threads

9

COMP 322, Spring 2020 (M.Joyner)

Entry and Wait Sets

10

COMP 322, Spring 2020 (M.Joyner)

The notify() Method

When a thread calls notify(), the following occurs:
1. selects an arbitrary thread T from the wait set
2. moves T to the entry set
3. sets T to Runnable

T can now compete for the object’s lock again

11

COMP 322, Spring 2020 (M.Joyner)

Multiple Notifications

• notify() selects an arbitrary thread from the wait set.

—This may not be the thread that you want to be selected.

—Java does not allow you to specify the thread to be selected

• notifyAll() removes ALL threads from the wait set and places them in the entry set. This
allows the threads to decide among themselves who should proceed next.

• notifyAll() is a conservative strategy that works best when multiple threads may be in
the wait set

12

COMP 322, Spring 2020 (M.Joyner)

insert() with wait/notify Methods

public synchronized void insert(Object item) {
 while (count == BUFFER SIZE) {
 try {
 wait();
 }
 catch (InterruptedException e) { }
 }
 ++count;
 buffer[in] = item;
 in = (in + 1) % BUFFER SIZE;
 notify();
}

13

COMP 322, Spring 2020 (M.Joyner)

remove() with wait/notify Methods

public synchronized Object remove() {
 Object item;
 while (count == 0) {
 try {
 wait();
 }
 catch (InterruptedException e) { }
 }
 --count;
 item = buffer[out];
 out = (out + 1) % BUFFER SIZE;
 notify();
 return item;
}

14

COMP 322, Spring 2020 (M.Joyner)

Complete Bounded Buffer using Java Synchronization

public class BoundedBuffer implements Buffer
{
 private static final int BUFFER SIZE = 5;
 private int count, in, out;
 private Object[] buffer;
 public BoundedBuffer() { // buffer is initially empty
 count = 0;
 in = 0;
 out = 0;
 buffer = new Object[BUFFER SIZE];
 }
 public synchronized void insert(Object item) { // See previous slides
 }
 public synchronized Object remove() { // See previous slides
 }
}

15

COMP 322, Spring 2020 (M.Joyner)

Announcements

•Checkpoint 2 for Homework 3 is due today at 11:59pm
•The entire written + programming (Checkpoint #3) is due by Friday, April 3rd at 11:59pm
•Quiz for Unit 5 is due Monday, March 30th at 11:59pm
•Lab 5 is due Monday, March 30th at 11:59pm

—Commit solution and slurm output file to svn to get checked off
•You now have 5 slip days (up from 3)

16

COMP 322, Spring 2020 (M.Joyner)

Worksheet #25: Bounded Buffer

Consider the case when multiple threads call insert() and remove() methods concurrently for a
single BoundedBuffer instance with SIZE >= 1.

1) Can you provide an example in which the wait set includes a thread waiting at line 2 in insert()
and a thread waiting at line 11 in remove(), in slide 8? If not, why not?

2) How would the code behave if all wait/notify calls (lines 2, 6, 11, 15) were removed from the
insert() and remove() methods in slide 8?

17

