COMP 322 Spring 2021

Lab 2: Futures

Instructor: Mackale Joyner

Course wiki: http://comp322.rice.edu

Staff Email: comp322-staff@rice.edu

Goals for this lab

e Experiment with functional programming and futures, including the future| API

Downloads

As with lab 1, the provided template project is accessible through your private GitHub classroom repo at:
https://classroom.github.com/a/CKWg67yJ

For instructions on checking out this repo through IntelliJ or through the command-line, please see the Lab
1 handout. The below instructions will assume that you have already checked out the lab2 folder, and that
you have imported it as a Maven Project if you are using IntelliJ.

1 Getting Familiar with Futures

You can think of futures as an async with a return value. Like an async, the logic associated with a future
takes place asynchronously, not necessarily when the future is created. Different from an async, however, is
that future logic returns a value, which is of course only accessible after the future has completed. The value
can be queried using the HjFuture object returned from a call to future by calling get on it. HjFuture.get
will block the calling task until the corresponding future task has completed, and then return its value.

1.1 Pascal’s Triangle With Futures

Pascal’s Triangle is a recursive algorithm that can be visualized as follows. In the initial step, we create a
triangle of integers and initialize all border entries to one. We say that this triangle has N rows, and that
each row has K columns (where N is fixed but K varies by row, where K for row nisn + 1). Rows and columns
are numbered starting at zero. Figure [1| depicts an initialized Pascal’s Triangle.

1 1
1 1

Figure 1: An initialized Pascal’s triangle for N = 6.

1of


http://comp322.rice.edu
mailto:comp322-staff@rice.edu
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/Module1.html#future-edu.rice.hj.api.HjSuspendingCallable-
https://classroom.github.com/a/CKWg67yJ

COMP 322 Lab 2: Futures
Spring 2021

To fill in each empty cell of the triangle, we sum the values to its top left and top right. For example, to
compute the the element forn = 2 and k = 1 we would sum the values stored at (1, 0) and (1, 1). Figure
depicts a Pascal’s Triangle with element (2, 1) filled in.

1
1 1
1 2 1
1 1
1 1

1 1

Figure 2: An example of filling in element (2, 1) for a Pascal’s triangle with N = 6.

Applying this algorithm recursively by row would produce the complete triangle in Figure [3]

1
1 1
1 21
1 3 31
14 6 4 1
1 510 10 51

Figure 3: A complete Pascal’s Triangle for N = 6.

In this lab, you will need to edit PascalsTriangle. java to produce a correct parallel solution using futures.
In PascalsTriangle. java you will find a reference sequential version which you can use HjFuture and the
future API to parallelize. You must ensure that a call do doWork (1) is made for each addition of two parent
nodes to calculate a child node’s value. Running PascalsTriangleCorrectnessTest.java will verify the
correctness and abstract performance of your solution.

Turning in your lab work
For each lab, you will need to turn in your work before leaving, as follows.

1. Show your work to an instructor or TA to get checked off for this lab during lab or office hours. They
will want to see your passing unit tests on your laptop. You may also just commit and push your code
to your GitHub repo by Tuesday at 12pm (noon). The staff will then run your code and check you off
if the tests pass.

2. Commit and push your code to GitHub.

20f



	Getting Familiar with Futures
	Pascal's Triangle With Futures


