
COMP 322 Spring 2021

Lab 3: Finish Accumulators and NQueens Problem
Instructor: Mack Joyner

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

HJlib Documentation: https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation

Goals for this lab

• Implement a parallel version of NQueens using Finish Accumulators, and evaluate its performance
using abstract metrics (Lab3NQueensAbstractMetricsCorrectnessTest)

• Extend the implementation for improved real performance (Lab3NQueensHjPerformanceTest) by using
a “cutoff” strategy.

Downloads

As with previous labs, the provided template project is accessible through your private GitHub repo at
https://classroom.github.com/a/XKe2q2HQ

The below instructions will assume that you have already checked out the lab3 folder, and that you have
imported it as a Maven Project if you are using IntelliJ.

1 The N-Queens Problem

The lecture on Finish Accumulators introduced the N-Queens problem: how can we place N queens on an
N × N chessboard so that no two queens can capture each other? This problem was also presented in the
demonstration video for topic 2.3.

The lab code already contains a sequential implementation for solving the N-Queens problem
(NQueensSequential). The first goal of this lab is to create a parallel version of an N-Queens solver
using HJlib and finish-accumulators. These changes should be made in the NQueensHjLib class, primarily
in the nqueensKernel method. The sequential solution has been inserted into NQueensHjLib, with TODOs
specifying the steps to transform it to a parallel solution. Your code for this section should be tested by only
running Lab3NQueensAbstractMetricsCorrectnessTest.

The implementation of the okToPlace() method in the NQueensRunner class performs one call to doWork(1)

for each pair of squares that is tested, to track abstract metrics.

2 A Note on Real Performance and the Cutoff Strategy

2.1 Real Performance

In this lab, we move from abstract metrics to real multi-threaded performance for the first time. Real
performance is messier than abstract performance because it is affected by its environment. Many students
will have varying hardware, varying software, and possibly other applications running at the same time when
doing this lab on their laptops. Even your laptop’s power manager can throttle the number of hardware
cores your HJlib program gets to use, limiting your speedup when not plugged into a wall socket.

1 of 3

http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/API+Documentation
https://classroom.github.com/a/XKe2q2HQ


COMP 322
Spring 2021

Lab 3: Finish Accumulators and NQueens Problem

void foo (int depth) { // Assume WORK decreases as depth increases

if (n == LIMIT ) {

// Process base case

}

if (n < CUTOFF) { // PARALLEL VERSION

. . .

async foo(n+1);

. . .

}

else { // SEQUENTIAL VERSION

. . .

foo(n+1);

. . .

}

}

Figure 1: Code schema for parallel divide-and-conquer algorithm with cutoff

For today’s lab, you will see what real-world speedup you can achieve on your local laptop. If you do not
see any speedup in real performance (i.e., if you cannot pass Lab3NQueensHjPerformanceTest), you can try
closing down any other expensive applications that might be running, or plugging your laptop into a power
supply. You will not be penalized if your code fails Lab3NQueensHjPerformanceTest on your laptop due to
environmental factors.

2.2 Cutoff Strategy

A common way to reduce the overheads seen in real performance when creating large numbers of tasks (each
of which does very little work) is for the programmer to add a cutoff test. Figure 1 shows a code schema
for a parallel divide-and-conquer algorithm with a CUTOFF value. While conceptually asyncs do not do
any actual application work, the creation of an async still consumes both CPU and memory resources. As
a result, while creating an excessive amount of asyncs might maximize the abstract parallelism of your
application, it may actually lead to your code running slower than a sequential implementation.

In this section, we will use the cutoff strategy to implement a more efficient parallel implementation that
can also pass the real world performance tests in Lab3NQueensHjPerformanceTest. We can implement
the cutoff strategy by saying that for any depth greater than or equal to a certain cutoff, we will run the
remaining computation sequentially. You can access a recommended cutoff value for the current test by
calling getCutoff() inside of NQueensHjLib, or you can use a suitable constant that you choose as the
cutoff.

Once you have implemented the cutoff strategy, try re-running the tests in Lab3NQueensHjPerformanceTest

on your laptop to see if the results have improved from your initial, maximally parallel solution.

3 Demonstrating and submitting in your lab work

For this lab, you will need to demonstrate and submit your work, as follows.

1. Show your work to an instructor or TA to get credit for this lab. You have until Thursday, March 4th
at 2pm to get your lab checked off.

2. Commit, push, and check that all the work for today’s lab is in your lab3 directory by opening
https://classroom.github.com/a/XKe2q2HQ in your web browser and checking that your changes

2 of 3

https://classroom.github.com/a/XKe2q2HQ


COMP 322
Spring 2021

Lab 3: Finish Accumulators and NQueens Problem

have appeared.

3 of 3


	The N-Queens Problem
	A Note on Real Performance and the Cutoff Strategy
	Real Performance
	Cutoff Strategy

	Demonstrating and submitting in your lab work

