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Worksheet #11: Forall Loops and Barriers
Draw a “barrier matching” figure similar to lecture 12 slide 11 for the code fragment below. 

1. String[] a = { “ab”, “cde”, “f” }; 

2. . . . int m = a.length; . . .  

3. forallPhased (0, m-1, (i) -> { 

4.   for (int j = 0; j < a[i].length(); j++) { 

5.     // forall iteration i is executing phase j 

6.     System.out.println("(" + i + "," + j + ")"); 

7.     next();    

8.   } 

9. });
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HJ code for One-Dimensional Iterative Averaging using nested 
forseq-forall structure

1. double[] myVal=new double[n+2]; myVal[n+1] = 1;
2.double[] myNew=new double[n+2]; myNew[n+1] = myVal[n+1]; 
3. forseq(0, m-1, (iter) -> {
4.   // Compute MyNew as function of input array MyVal
5.   forall(1, n, (j) -> { // Create n tasks
6.      myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
7.   }); // forall
8.   // Swap myVal & myNew;
9.    temp=myVal; myVal=myNew; myNew=temp; 
10.   // myNew becomes input array for next iteration
11.}); // for

3



COMP 322, Spring 2021 (M.Joyner)

Example: HJ for One-Dimensional Iterative Averaging with 
chunking

1. double[] myVal=new double[n+2]; myVal[n+1] = 1;
2.double[] myNew=new double[n+2]; myNew[n+1] = myVal[n+1];
3. int nc = numWorkerThreads();
4. forseq(0, m-1, (iter) -> {
5.   // Compute MyNew as function of input array MyVal
6.   forallChunked(1, n, n/nc, (j) -> { // Create nc tasks
7.       myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
8.   }); // forallChunked
9.   temp=myVal; myVal=myNew; myNew=temp;// Swap myVal & myNew; 
10.  // myNew becomes input array for next iteration
11.}); // for
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x = a + b; 
y = b * 7; 
z = (x-y) * (x+y);

7
a b

x y
1 2

3 4

5An operator executes when all its input 
values are present; copies of the result value 
are distributed to the destination operators.

Example instruction sequence and its dataflow graph
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Macro-Dataflow Programming
• “Macro-dataflow” = extension of 
dataflow model from instruction-level to 
task-level operations 
• General idea: build an arbitrary task 
graph, but restrict all inter-task 
communications to single-assignment 
variables (like futures) 

• Static dataflow ==> graph fixed when 
program execution starts 
• Dynamic dataflow ==> graph can grow 
dynamically 

• Semantic guarantees: race-freedom, 
determinism 

• “Deadlocks” are possible due to 
unavailable inputs (but they are 
deterministic)Communication via “single-assignment” variables
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Extending HJ Futures for Macro-Dataflow: 
Data-Driven Futures (DDFs)

HjDataDrivenFuture<T1> ddfA = newDataDrivenFuture(); 

• Allocate an instance of a data-driven-future object (container) 

• Object in container must be of type T1, and can only be assigned once via put() 
operations 

• HjDataDrivenFuture extends the HjFuture interface 

ddfA.put(V) ; 

• Store object V (of type T1) in ddfA, thereby making ddfA available 

• Single-assignment rule: at most one put is permitted on a given DDF
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Extending HJ Futures for Macro-Dataflow: 
Data-Driven Tasks (DDTs)

asyncAwait(ddfA, ddfB, …, () -> Stmt); 

• Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, … become 
available (i.e., after task becomes “enabled”) 

• Await clause can be used to implement “nodes” and “edges” in a computation graph 

ddfA.get() 

• Return value (of type T1) stored in ddfA 

• Throws an exception if put() has not been performed 

— Should be performed by async’s that contain ddfA in their await clause, or if there’s 
some other synchronization to guarantee that the put() was performed
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1. finish(() -> { 

2.   HjDataDrivenFuture<Void> ddfA = newDataDrivenFuture(); 

3.   HjDataDrivenFuture<Void> ddfB = newDataDrivenFuture(); 

4.   HjDataDrivenFuture<Void> ddfC = newDataDrivenFuture(); 

5.   HjDataDrivenFuture<Void> ddfD = newDataDrivenFuture(); 

6.   HjDataDrivenFuture<Void> ddfE = newDataDrivenFuture(); 

7.   asyncAwait(ddfA, () -> { ... ;  ddfB.put(…); }); // Task B 

8.   asyncAwait(ddfA, () -> { ... ;  ddfC.put(…); }); // Task C 

9.   asyncAwait(ddfB, ddfC, ()->{ ... ; ddfD.put(…); }); // Task D 

10.  asyncAwait(ddfC, () -> { ... ;  ddfE.put(…); }); // Task E 

11.  asyncAwait(ddfD, ddfE, () -> { ... }); // Task F 

12.  // Note that creating a “producer” task after its “consumer” 

13.  // task is permitted with DDFs & DDTs, but not with futures 

14.  async(() -> { ... ; ddfA.put(…); }); // Task A 

15. }); // finish

Converting previous Future example to 
Data-Driven Futures and AsyncAwait Tasks
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What is Deadlock?
• A parallel program execution contains a deadlock if some task’s execution remains incomplete due to 

it being blocked indefinitely awaiting some condition 

• Example of a program with a deadlocking execution 

 DataDrivenFuture left = new DataDrivenFuture(); 

 DataDrivenFuture right = new DataDrivenFuture(); 

 finish { 

   async await ( left ) right.put(rightBuilder()); // Task1 

   async await ( right ) left.put(leftBuilder()); // Task2 

 } 

• In this case, Task1 and Task2 are in a deadlock cycle. 

• HJ-Lib has a deadlock detection debug option, which can be enabled as follows: 

• System.setProperty(HjSystemProperty.trackDeadlocks.propertyKey(), “true”); 

• Throws an edu.rice.hj.runtime.util.DeadlockException when deadlock detected
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Implementing Future Tasks using DDFs

• Future version 
1. HjFuture<T> f = future(() -> { return g(); }); 

2. S1 

3. async(() -> {

4.   ... = f.get(); // blocks if needed

5.   S2;

6.   S3;

7. });

• DDF version 
1. HjDataDrivenFuture<T> f = newDataDrivenFuture(); 

2. async(() -> { f.put(g()) });

3. S1 

4. asyncAwait(f, () -> { 

5.   ... = f.get(); // does not block —- why?

6.   S2;

7.   S3;

8. }); 
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Differences between Futures and DDFs/DDTs

• Consumer task blocks on get() for each future that it reads, whereas async-await 
does not start execution till all DDFs are available 

• Future tasks cannot deadlock, but it is possible for a DDT to block indefinitely 
(“deadlock”) if one of its input DDFs never becomes available 

• DDTs and DDFs are more general than futures 
— Producer task can only write to a single future object, whereas a DDT can write to 

multiple DDF objects 
— The choice of which future object to write to is tied to a future task at creation time, 

where as the choice of output DDF can be deferred to any point with a DDT 
— Consumer DDTs can be created before the producer tasks 

• DDTs and DDFs can be implemented more efficiently than futures 
— An “asyncAwait” statement does not block the worker, unlike a future.get() 
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Two Exception (error) cases for DDFs that cannot occur with futures

• Case 1: If two put’s are attempted on the same DDF, an exception is thrown because 
of the violation of the single-assignment rule 

— There can be at most one value provided for a future object (since it comes from the 
producer task’s return statement) 

• Case 2: If a get is attempted by a task on a DDF that was not in the task’s await list, 
then an exception is thrown because DDF’s do not support blocking gets 

— Futures support blocking gets 
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Deadlock example with DDTs (cannot be reproduced with futures)
• A parallel program execution contains a deadlock if some task’s execution remains incomplete due to it being blocked 

indefinitely awaiting some condition 

1.  HjDataDrivenFuture left = newDataDrivenFuture();

2.  HjDataDrivenFuture right = newDataDrivenFuture();

3.  finish(() -> {

4.    asyncAwait(left, () -> { 

5.       right.put(rightWriter()); });

6.    asyncAwait(right, () -> { 

7.       left.put(leftWriter()); });

8.  });

• HJ-Lib has deadlock detection mode 

• Enabled using: 
— System.setProperty(HjSystemProperty.trackDeadlocks.propertyKey(), “true"); 

— Throws an edu.rice.hj.runtime.util.DeadlockException when deadlock detected
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Announcements & Reminders

• Quiz for Unit 2 (topics 2.1 - 2.8) is due today by 11:59pm 

• HW #2 is due Wednesday, March 3rd by 11:59pm 

• No class on Monday (“Sprinkle” day) 

• Lab #4 on Tuesday/Thursday 

• Lab #3 due Thursday, March 4th by 2pm 

• Midterm Exam on Thursday, Mar. 11th from 7-9pm in Canvas  
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 For the example below, will reordering the five async statements change the meaning of the program  (assuming that the 
semantics of the reader/writer methods depends only on their parameters) ?  If so, show two orderings that exhibit 
different behaviors.  If not, explain why not. 

1. DataDrivenFuture left = new DataDrivenFuture(); 

2. DataDrivenFuture right = new DataDrivenFuture(); 

3. finish { 

4.   async await(left) leftReader(left); // Task3 

5.   async await(right) rightReader(right); // Task5 

6.   async await(left,right)  

7.         bothReader(left,right); // Task4 

8.   async left.put(leftWriter()); // Task1 

9.   async right.put(rightWriter());// Task2 

10. }

Worksheet 12: Data Driven Futures 
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