COMP 322: Fundamentals of Parallel Programming

Lecture 12: Data-Driven Tasks

Mack Joyner
mjoyner@rice.edu

http:.//comp322.rice.edu

COMP 322 Lecture 12 February 2021

http://comp322.rice.edu

Worksheet #11: Forall Loops and Barriers

Draw a “barrier matching” figure similar to lecture 12 slide 11 for the code fragment below.

1.

2.

3.

String[] a

int m

— _{ llab", llCde", llf" };

= a.length;

forallPhased (0, m-1, (1) -> {

for (int j

});

// fora

= 0; j < a[i]l.length(); j++) {

Ll tteration 1 1s executing phase j

System.out.println("(" + 1 + "," + j + ")");

next();

COMP 322, Spring 2021 (M.Joyner)

Solution

i=0 i=1
| |
(0,00 (1,0)
| |

next ----- next
|
(1,2)
|
end ----- next
end

HJ code for One-Dimensional Iterative Averaging using nested
forseg-forall structure

1. double[] myVal=new double[n+2]; myVal[n+1] = 1;
2.double[] myNew=new double[n+2]; myNew[n+1] = myVal[n+1];
3.forseq(0, m-1, (iter) ->{

4. [/ Compute MyNew as function of input array MyVal
5. forall(1, n, (j) -> { // Create n tasks

6. myNew][j] = (myVal[j-1] + myVal[j+1])/2.0;

7. }); // forall

8. // Swap myVal & myNew;

9. temp=myVal; myVal=myNew; myNew=temp;

10. // myNew becomes input array for next iteration
11.}); // for

3
COMP 322, Spring 2021 (M.Joyner) %

Example: HJ for One-Dimensional Iterative Averaging with
chunking

1. double[] myVal=new double[n+2]; myVal[n+1] = 1;
2.double[] myNew=new double[n+2]; myNew[n+1] = myVal[n+1];
3.int nc = numWorkerThreads();
4. forseq(0, m-1, (iter) ->{
5. /I Compute MyNew as function of input array MyVal
. forallChunked(1, n, n/nc, (j) ->{ // Create nc tasks

. }; // forallChunked

6

7. myNew][j] = (myVal[j-1] + myVal[j+1])/2.0;

8

9. temp=myVal; myVal=myNew; myNew=temp;// Swap myVal & myNew;

10. // myNew becomes input array for next iteration
11.}); // for

3
COMP 322, Spring 2021 (M.Joyner) %

Example instruction sequence and its dataflow graph

x =a+ b;
y=b*7,
z = (x-y) * (xty);

An operator executes when all its input
values are present; copies of the result value
are distributed to the destination operators.

2

COMP 322, Spring 2021 (M.Joyner)

Macro-Dataflow Programming

Task

Task — /7~ lask

LA

Tas
\ —
Task
F

Communication via “single-assignment” variables

Task

COMP 322, Spring 2021 (M.Joyner)

 “Macro-dataflow” = extension of
dataflow model from instruction-level to

task-level operations
* General idea: build an arbitrary task

graph, but restrict all inter-task
communications to single-assignment

variables (like futures)
» Static dataflow ==> graph fixed when

program execution starts
* Dynamic dataflow ==> graph can grow

dynamically
» Semantic guarantees: race-freedom,

determinism
» “Deadlocks” are possible due to

unavailable inputs (but they are
deterministic)

Extending HJ Futures for Macro-Dataflow:
Data-Driven Futures (DDFs)

HijDataDrivenFuture<Tl> ddfA = newDataDrivenFuture();
« Allocate an instance of a data-driven-future object (container)

« Object in container must be of type T1, and can only be assigned once via put()
operations

« HjDataDrivenFuture extends the HjFuture interface

ddfA.put(V) ;
« Store object V (of type T1) in ddfA, thereby making ddfA available

« Single-assignment rule: at most one put is permitted on a given DDF

R
COMP 322, Spring 2021 (M.Joyner) %

Extending HJ Futures for Macro-Dataflow:
Data-Driven Tasks (DDTs)

asyncAwait(ddfA, ddfB, .., () -> Stmt);

« Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, ... become
available (i.e., after task becomes “enabled”)

« Await clause can be used to implement “nodes” and “edges” in a computation graph

ddfA.get ()
» Return value (of type T1) stored in ddfA
« Throws an exception if put() has not been performed

— Should be performed by async’s that contain ddfA in their await clause, or if there’s
some other synchronization to guarantee that the put() was performed

COMP 322, Spring 2021 (M.Joyner) 2

Converting previous Future example to
Data-Driven Futures and AsyncAwait Tasks

1. finish(() -> {

2. HjDataDrivenFuture<Void> ddfA = newDataDrivenFuture();

3. HjDataDrivenFuture<Void> ddfB = newDataDrivenFuture();

4. HjDataDrivenFuture<Void> ddfC = newDataDrivenFuture();

5. HjDataDrivenFuture<Void> ddfD = newDataDrivenFuture();

6. HjDataDrivenFuture<Void> ddfE = newDataDrivenFuture();

7. asyncAwait(ddfA, () -> { ... ; ddfB.put(..); }); // Task B
8. asyncAwait(ddfA, () -> { ... ; ddfC.put(..); }); // Task C
9. asyncAwait(ddfB, ddfC, ()->{ ... ; ddfD.put(..); }); // Task D
10. asyncAwait(ddfC, () -> { ... ; ddfE.put(..); }); // Task E
11. asyncAwait(ddfD, ddfE, () -> { ... }); // Task F

12. // Note that creating a “producer” task after i1ts “consumer”
13. // task i1s permitted with DDFs & DDTs, but not with futures
14. async(() -> { ... ; ddfA.put(..); }); // Task A

15. }); // fintsh

COMP 322, Spring 2021 (M.Joyner)

What is Deadlock?

* A parallel program execution contains a deadlock if some task’s execution remains incomplete due to

it being blocked indefinitely awaiting some condition
 Example of a program with a deadlocking execution
DataDrivenFuture left = new DataDrivenFuture();
DataDrivenFuture right = new DataDrivenFuture();
finish {
async awalt (left) right.put(rightBuilder()); // Taskl
async awailt (right) left.put(leftBuilder()); // Task2
}
* Inthis case, Task1 and Task?2 are in a deadlock cycle.
 HJ-Lib has a deadlock detection debug option, which can be enabled as follows:
» System.setProperty(HjSystemProperty.trackDeadlocks.propertyKey(), “true”);

* Throws an edu.rice.hj.runtime.util. DeadlockException when deadlock detected

10 COMP 322, Spring 2021 (M.Joyner)

N
2

11

Future version

Implementing Future Tasks using DDFs

1. HjFuture<T> f = future(() -> { return g(); });
2. Sl
3. async(() -> {
4. . = f.get(); // blocks if needed
5. S2;
6. S3;
7. })i
DDF version
1. HjDataDrivenFuture<T> f = newDataDrivenFuture();
2. async(() -> { f.put(g()) });
3. S1
4. asyncAwalit(f, () -> {
5. . = f.get(); // does not block — why?
6. S2;
7. S3;
8. })i

COMP 322, Spring 2021 (M.Joyner)

12

Differences between Futures and DDFs/DDTs

Consumer task blocks on get() for each future that it reads, whereas async-await
does not start execution till all DDFs are available

Future tasks cannot deadlock, but it is possible for a DDT to block indefinitely
(“deadlock”) if one of its input DDFs never becomes available
DDTs and DDFs are more general than futures

— Producer task can only write to a single future object, whereas a DDT can write to
multiple DDF objects

— The choice of which future object to write to is tied to a future task at creation time,
where as the choice of output DDF can be deferred to any point with a DDT

— Consumer DDTs can be created before the producer tasks

DDTs and DDFs can be implemented more efficiently than futures
— An “asyncAwait” statement does not block the worker, unlike a future.get()

COMP 322, Spring 2021 (M.Joyner) 2

Two Exception (error) cases for DDFs that cannot occur with futures

« Case 1:If two put's are attempted on the same DDF, an exception is thrown because
of the violation of the single-assignment rule

— There can be at most one value provided for a future object (since it comes from the
producer task’s return statement)

« (Case 2:If agetis attempted by a task on a DDF that was not in the task’s await list,
then an exception is thrown because DDF's do not support blocking gets

— Futures support blocking gets

13 COMP 322, Spring 2021 (M.Joyner)

14

Deadlock example with DD Ts (cannot be reproduced with futures)

A parallel program execution contains a deadlock if some task’s execution remains incomplete due to it being blocked
indefinitely awaiting some condition

HjDataDrivenFuture left = newDataDrivenFuture();
HjDataDrivenFuture right = newDataDrivenFuture();
finish(() -> {
asyncAwait(left, () -> {
right.put(rightWriter()); });
asyncAwait(right, () -> {

left.put(leftWriter()); });

o N o U1 s w DD

});

- HJ-Lib has deadlock detection mode

- Enabled using:
— System.setProperty(HjSystemProperty.trackDeadlocks.propertyKey(), “true");

— Throws an edu.rice.hj.runtime.util. DeadlockException when deadlock detected

COMP 322, Spring 2021 (M.Joyner)

.-.98
2

15

Announcements & Reminders

Quiz for Unit 2 (topics 2.1 - 2.8) is due today by 11:59pm
HW #2 is due Wednesday, March 3rd by 11:59pm

No class on Monday (“Sprinkle” day)

Lab #4 on Tuesday/Thursday

Lab #3 due Thursday, March 4th by 2pm

Midterm Exam on Thursday, Mar. 11th from 7-9pm in Canvas

COMP 322, Spring 2021 (M.Joyner)

8
)2

Worksheet 12: Data Driven Futures

For the example below, will reordering the five async statements change the meaning of the program (assuming that the
semantics of the reader/writer methods depends only on their parameters) ? If so, show two orderings that exhibit
different behaviors. If not, explain why not.

. DataDrivenFuture left = new DataDrivenFuture();
. DataDrivenFuture right = new DataDrivenFuture();
. finish {
async awailt(left) leftReader(left); // Task3
async await(right) rightReader(right); // Task5
async awalt(left,right)

bothReader(left,right); // Task4
async left.put(leftWriter()); // Taskl
async right.put(rightWriter());// Task2

.}

O 00 J OO U0 B W NN =

-
S .

COMP 322, Spring 2021 (M.Joyner)

