
COMP 322: Fundamentals of Parallel Programming

Lecture 12: Data-Driven Tasks

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 12 February 2021

http://comp322.rice.edu

COMP 322, Spring 2021 (M.Joyner)

Worksheet #11: Forall Loops and Barriers
Draw a “barrier matching” figure similar to lecture 12 slide 11 for the code fragment below.

1. String[] a = { “ab”, “cde”, “f” };

2. . . . int m = a.length; . . .

3. forallPhased (0, m-1, (i) -> {

4. for (int j = 0; j < a[i].length(); j++) {

5. // forall iteration i is executing phase j

6. System.out.println("(" + i + "," + j + ")");

7. next();

8. }

9. });

2

Solution

COMP 322, Spring 2021 (M.Joyner)

HJ code for One-Dimensional Iterative Averaging using nested
forseq-forall structure

1. double[] myVal=new double[n+2]; myVal[n+1] = 1;
2.double[] myNew=new double[n+2]; myNew[n+1] = myVal[n+1];
3. forseq(0, m-1, (iter) -> {
4. // Compute MyNew as function of input array MyVal
5. forall(1, n, (j) -> { // Create n tasks
6. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
7. }); // forall
8. // Swap myVal & myNew;
9. temp=myVal; myVal=myNew; myNew=temp;
10. // myNew becomes input array for next iteration
11.}); // for

3

COMP 322, Spring 2021 (M.Joyner)

Example: HJ for One-Dimensional Iterative Averaging with
chunking

1. double[] myVal=new double[n+2]; myVal[n+1] = 1;
2.double[] myNew=new double[n+2]; myNew[n+1] = myVal[n+1];
3. int nc = numWorkerThreads();
4. forseq(0, m-1, (iter) -> {
5. // Compute MyNew as function of input array MyVal
6. forallChunked(1, n, n/nc, (j) -> { // Create nc tasks
7. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
8. }); // forallChunked
9. temp=myVal; myVal=myNew; myNew=temp;// Swap myVal & myNew;
10. // myNew becomes input array for next iteration
11.}); // for

4

COMP 322, Spring 2021 (M.Joyner)

x = a + b;
y = b * 7;
z = (x-y) * (x+y);

7
a b

x y
1 2

3 4

5An operator executes when all its input
values are present; copies of the result value
are distributed to the destination operators.

Example instruction sequence and its dataflow graph

5

COMP 322, Spring 2021 (M.Joyner)

Macro-Dataflow Programming
• “Macro-dataflow” = extension of
dataflow model from instruction-level to
task-level operations
• General idea: build an arbitrary task
graph, but restrict all inter-task
communications to single-assignment
variables (like futures)

• Static dataflow ==> graph fixed when
program execution starts
• Dynamic dataflow ==> graph can grow
dynamically

• Semantic guarantees: race-freedom,
determinism

• “Deadlocks” are possible due to
unavailable inputs (but they are
deterministic)Communication via “single-assignment” variables

6

COMP 322, Spring 2021 (M.Joyner)

Extending HJ Futures for Macro-Dataflow:
Data-Driven Futures (DDFs)

HjDataDrivenFuture<T1> ddfA = newDataDrivenFuture();

• Allocate an instance of a data-driven-future object (container)

• Object in container must be of type T1, and can only be assigned once via put()
operations

• HjDataDrivenFuture extends the HjFuture interface

ddfA.put(V) ;

• Store object V (of type T1) in ddfA, thereby making ddfA available

• Single-assignment rule: at most one put is permitted on a given DDF

7

COMP 322, Spring 2021 (M.Joyner)

Extending HJ Futures for Macro-Dataflow:
Data-Driven Tasks (DDTs)

asyncAwait(ddfA, ddfB, …, () -> Stmt);

• Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, … become
available (i.e., after task becomes “enabled”)

• Await clause can be used to implement “nodes” and “edges” in a computation graph

ddfA.get()

• Return value (of type T1) stored in ddfA

• Throws an exception if put() has not been performed

— Should be performed by async’s that contain ddfA in their await clause, or if there’s
some other synchronization to guarantee that the put() was performed

8

COMP 322, Spring 2021 (M.Joyner)

1. finish(() -> {

2. HjDataDrivenFuture<Void> ddfA = newDataDrivenFuture();

3. HjDataDrivenFuture<Void> ddfB = newDataDrivenFuture();

4. HjDataDrivenFuture<Void> ddfC = newDataDrivenFuture();

5. HjDataDrivenFuture<Void> ddfD = newDataDrivenFuture();

6. HjDataDrivenFuture<Void> ddfE = newDataDrivenFuture();

7. asyncAwait(ddfA, () -> { ... ; ddfB.put(…); }); // Task B

8. asyncAwait(ddfA, () -> { ... ; ddfC.put(…); }); // Task C

9. asyncAwait(ddfB, ddfC, ()->{ ... ; ddfD.put(…); }); // Task D

10. asyncAwait(ddfC, () -> { ... ; ddfE.put(…); }); // Task E

11. asyncAwait(ddfD, ddfE, () -> { ... }); // Task F

12. // Note that creating a “producer” task after its “consumer”

13. // task is permitted with DDFs & DDTs, but not with futures

14. async(() -> { ... ; ddfA.put(…); }); // Task A

15. }); // finish

Converting previous Future example to
Data-Driven Futures and AsyncAwait Tasks

9

COMP 322, Spring 2021 (M.Joyner)

What is Deadlock?
• A parallel program execution contains a deadlock if some task’s execution remains incomplete due to

it being blocked indefinitely awaiting some condition

• Example of a program with a deadlocking execution

 DataDrivenFuture left = new DataDrivenFuture();

 DataDrivenFuture right = new DataDrivenFuture();

 finish {

 async await (left) right.put(rightBuilder()); // Task1

 async await (right) left.put(leftBuilder()); // Task2

 }

• In this case, Task1 and Task2 are in a deadlock cycle.

• HJ-Lib has a deadlock detection debug option, which can be enabled as follows:

• System.setProperty(HjSystemProperty.trackDeadlocks.propertyKey(), “true”);

• Throws an edu.rice.hj.runtime.util.DeadlockException when deadlock detected

10

COMP 322, Spring 2021 (M.Joyner)

Implementing Future Tasks using DDFs

• Future version
1. HjFuture<T> f = future(() -> { return g(); });

2. S1

3. async(() -> {

4. ... = f.get(); // blocks if needed

5. S2;

6. S3;

7. });

• DDF version
1. HjDataDrivenFuture<T> f = newDataDrivenFuture();

2. async(() -> { f.put(g()) });

3. S1

4. asyncAwait(f, () -> {

5. ... = f.get(); // does not block —- why?

6. S2;

7. S3;

8. });

11

COMP 322, Spring 2021 (M.Joyner)

Differences between Futures and DDFs/DDTs

• Consumer task blocks on get() for each future that it reads, whereas async-await
does not start execution till all DDFs are available

• Future tasks cannot deadlock, but it is possible for a DDT to block indefinitely
(“deadlock”) if one of its input DDFs never becomes available

• DDTs and DDFs are more general than futures
— Producer task can only write to a single future object, whereas a DDT can write to

multiple DDF objects
— The choice of which future object to write to is tied to a future task at creation time,

where as the choice of output DDF can be deferred to any point with a DDT
— Consumer DDTs can be created before the producer tasks

• DDTs and DDFs can be implemented more efficiently than futures
— An “asyncAwait” statement does not block the worker, unlike a future.get()

12

COMP 322, Spring 2021 (M.Joyner)

Two Exception (error) cases for DDFs that cannot occur with futures

• Case 1: If two put’s are attempted on the same DDF, an exception is thrown because
of the violation of the single-assignment rule

— There can be at most one value provided for a future object (since it comes from the
producer task’s return statement)

• Case 2: If a get is attempted by a task on a DDF that was not in the task’s await list,
then an exception is thrown because DDF’s do not support blocking gets

— Futures support blocking gets

13

COMP 322, Spring 2021 (M.Joyner)

Deadlock example with DDTs (cannot be reproduced with futures)
• A parallel program execution contains a deadlock if some task’s execution remains incomplete due to it being blocked

indefinitely awaiting some condition

1. HjDataDrivenFuture left = newDataDrivenFuture();

2. HjDataDrivenFuture right = newDataDrivenFuture();

3. finish(() -> {

4. asyncAwait(left, () -> {

5. right.put(rightWriter()); });

6. asyncAwait(right, () -> {

7. left.put(leftWriter()); });

8. });

• HJ-Lib has deadlock detection mode

• Enabled using:
— System.setProperty(HjSystemProperty.trackDeadlocks.propertyKey(), “true");

— Throws an edu.rice.hj.runtime.util.DeadlockException when deadlock detected

14

COMP 322, Spring 2021 (M.Joyner)

Announcements & Reminders

• Quiz for Unit 2 (topics 2.1 - 2.8) is due today by 11:59pm

• HW #2 is due Wednesday, March 3rd by 11:59pm

• No class on Monday (“Sprinkle” day)

• Lab #4 on Tuesday/Thursday

• Lab #3 due Thursday, March 4th by 2pm

• Midterm Exam on Thursday, Mar. 11th from 7-9pm in Canvas

15

COMP 322, Spring 2021 (M.Joyner)

 For the example below, will reordering the five async statements change the meaning of the program (assuming that the
semantics of the reader/writer methods depends only on their parameters) ? If so, show two orderings that exhibit
different behaviors. If not, explain why not.

1. DataDrivenFuture left = new DataDrivenFuture();

2. DataDrivenFuture right = new DataDrivenFuture();

3. finish {

4. async await(left) leftReader(left); // Task3

5. async await(right) rightReader(right); // Task5

6. async await(left,right)

7. bothReader(left,right); // Task4

8. async left.put(leftWriter()); // Task1

9. async right.put(rightWriter());// Task2

10. }

Worksheet 12: Data Driven Futures

16

