
COMP 322: Fundamentals of Parallel Programming

Lecture 15: Point-to-Point Synchronization with Phasers

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 15 March 2021

http://comp322.rice.edu

COMP 322, Spring 2021 (M.Joyner)

Answer the questions in the table below for the versions of the Iterative Averaging code shown in slides 7, 8, 10,
11. Write in your answers as functions of m, n, and nc.

Worksheet #14 Solution: Iterative Averaging Revisited

2

Slide 7 Slide 8 Slide 10 Slide 11

How many tasks are
created (excluding the
main program task)?

m*n
n
Incorrect:
n * m

m*nc
Incorrect:
n * nc

nc
Incorrect:
n*m, m*nc

How many barrier
operations (calls to
next per task) are
performed?

0
Incorrect:
m

m
Incorrect:
m*n

0
Incorrect:
m

m
Incorrect:
m*nc, nc

Which SPMD version is the most efficient?

COMP 322, Spring 2021 (M.Joyner)

Announcements & Reminders

• No lab this week

• Midterm Exam on Thursday, Mar. 11th from 7pm - 9pm in Canvas

• Open-book (class notes, slides, module)

• No internet other than course site, Canvas.

• Quiz for Unit 3 (topics 3.1 - 3.7) due Monday, Mar. 15th by 11:59pm

• HW3 available today, due Monday, April 5th by 11:59pm

• Checkpoint 1 due Wednesday, March 24th by 11:59pm

3

COMP 322, Spring 2021 (M.Joyner)

Point-to-point synchronization

Question: Can the point-to-point computation graph result in a smaller CPL than the barrier
computation graph?

iter = i

iter = i+1

Barrier synchronization

Barrier vs Point-to-Point Synchronization in
One-Dimensional Iterative Averaging Example

iter = i

iter = i+1

4

COMP 322, Spring 2021 (M.Joyner)

Point-to-point synchronization

Question: Can the point-to-point computation graph result in a smaller CPL than the barrier
computation graph?

iter = i

iter = i+1

Barrier synchronization

Barrier vs Point-to-Point Synchronization in
One-Dimensional Iterative Averaging Example

iter = i

iter = i+1

5

1 2 3 …

3 2 1 …1 2 3

3 2 1

COMP 322, Spring 2021 (M.Joyner)

Phasers: a unified construct for barrier and point-to-point
synchronization

• HJ phasers unify barriers with point-to-point synchronization

—Inspiration for java.util.concurrent.Phaser

• Previous example motivated the need for “point-to-point” synchronization

— With barriers, phase i of a task waits for all tasks associated with the same barrier to
complete phase i-1

— With phasers, phase i of a task can select a subset of tasks to wait for

• Phaser properties
—Support for barrier and point-to-point synchronization
—Support for dynamic parallelism --- the ability for tasks to drop phaser registrations on

termination (end), and for new tasks to add phaser registrations (async phased)
—A task may be registered on multiple phasers in different modes

6

COMP 322, Spring 2021 (M.Joyner)

Simple Example with Four Async Tasks and One Phaser
1. finish (() -> {

2. ph = newPhaser(SIG_WAIT); // mode is SIG_WAIT

3. asyncPhased(ph.inMode(SIG), () -> {

4. // A1 (SIG mode)

5. doA1Phase1(); next(); doA1Phase2(); });

6. asyncPhased(ph.inMode(SIG_WAIT), () -> {

7. // A2 (SIG_WAIT mode)

8. doA2Phase1(); next(); doA2Phase2(); });

9. asyncPhased(ph.inMode(HjPhaserMode.SIG_WAIT), () -> {

10. // A3 (SIG_WAIT mode)

11. doA3Phase1(); next(); doA3Phase2(); });

12. asyncPhased(ph.inMode(HjPhaserMode.WAIT), () -> {

13. // A4 (WAIT mode)

14. doA4Phase1(); next(); doA4Phase2(); });

15. });

7

COMP 322, Spring 2021 (M.Joyner)

Computation Graph Schema Simple Example with Four Async Tasks
and One Phaser

8

Semantics of next depends on registration mode
SIG_WAIT: next = signal + wait
SIG: next = signal
WAIT: next = wait

signal

wait
next

SIG SIG_WAIT SIG_WAIT WAIT

 A master thread (worker) gathers all signals and broadcasts a barrier completion

COMP 322, Spring 2021 (M.Joyner)

Summary of Phaser Construct
• Phaser allocation

— HjPhaser ph = newPhaser(mode);
– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— HjPhaserMode.SIG, HjPhaserMode.WAIT,

HjPhaserMode.SIG_WAIT, HjPhaserMode.SIG_WAIT_SINGLE
– NOTE: phaser WAIT is unrelated to Java wait/notify (which we will study later)

• Phaser registration
— asyncPhased (ph1.inMode(<mode1>), ph2.inMode(<mode2>), … () -> <stmt>)

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …
– Child task’s capabilities must be subset of parent’s
– asyncPhased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
— next();

– Advance each phaser that current task is registered on to its next phase
– Semantics depends on registration mode
– Barrier is a special case of phaser, which is why next is used for both

9

COMP 322, Spring 2021 (M.Joyner)

Capability Hierarchy

• A task can be registered in one of four modes with respect to a phaser:
SIG_WAIT_SINGLE, SIG_WAIT, SIG, or WAIT. The mode defines the set of capabilities —
signal, wait, single — that the task has with respect to the phaser. The subset relationship
defines a natural hierarchy of the registration modes. A task can drop (but not add)
capabilities after initialization.

SIG_WAIT_SINGLE = { signal, wait, single }

SIG_WAIT = { signal, wait }

SIG = { signal } WAIT = { wait }

10

COMP 322, Spring 2021 (M.Joyner)

Left-Right Neighbor Synchronization (with m=3 tasks)
1.finish(() -> { // Task-0
2. final HjPhaser ph1 = newPhaser(SIG_WAIT);
3. final HjPhaser ph2 = newPhaser(SIG_WAIT);
4. final HjPhaser ph3 = newPhaser(SIG_WAIT);
5. asyncPhased(ph1.inMode(SIG),ph2.inMode(WAIT),
6. () -> { doPhase1(1);
7. next(); // signals ph1, waits on ph2
8. doPhase2(1);
9. }); // Task T1
10. asyncPhased(ph2.inMode(SIG),ph1.inMode(WAIT),ph3.inMode(WAIT),
11. () -> { doPhase1(2);
12. next(); // signals ph2, waits on ph3
13. doPhase2(2);
14. }); // Task T2
15. asyncPhased(ph3.inMode(SIG),ph2.inMode(WAIT),
16. () -> { doPhase1(3);
17. next(); // signals ph3, waits on ph2
18. doPhase2(3);
19. }); // Task T3
20.}); // finish

11

COMP 322, Spring 2021 (M.Joyner)

Computation Graph for m=3 example
(without async-finish nodes and edges)

12

6

11

16

7-signal 7-wait

12-signal

17-signal

12-wait

17-wait

ph1.next
-start(0->1)

ph1.next
-end(0->1)

ph2.next
-start(0->1)

ph2.next
-end(0->1)

ph3.next
-start(0->1)

ph3.next
-end(0->1)

8

13

18

continue signal wait

COMP 322, Spring 2021 (M.Joyner)

forallPhased barrier is just an implicit phaser!
1. forallPhased(iLo, iHi, (i) -> {
2. S1; next(); S2; next();{...}
3. });

is equivalent to

1. finish(() -> {
2. // Implicit phaser for forall barrier
3. final HjPhaser ph = newPhaser(SIG_WAIT);
4. forseq(iLo, iHi, (i) -> {
5. asyncPhased(ph.inMode(SIG_WAIT), () -> {
6. S1; next(); S2; next();{...}
7. }); // next statements in async refer to ph
8. });

13

COMP 322, Spring 2021 (M.Joyner)

Midterm exam

• P1 = number of primes in the range 2..N

• P2 = number of primes in the range 2..square-root(N)

14

COMP 322, Spring 2021 (M.Joyner)

Worksheet #15: Reordered Asyncs with One Phaser

1. finish (() -> {

2. ph = newPhaser(SIG_WAIT); // mode is SIG_WAIT

3. asyncPhased(ph.inMode(SIG), () -> {

4. // A1 (SIG mode)

5. doA1Phase1(); next(); doA1Phase2(); });

6. asyncPhased(ph.inMode(HjPhaserMode.WAIT), () -> {

7. // A4 (WAIT mode)

8. doA4Phase1(); next(); doA4Phase2(); });

9. asyncPhased(ph.inMode(SIG_WAIT), () -> {

10. // A2 (SIG_WAIT mode)

11. doA2Phase1(); next(); doA2Phase2(); });

12. asyncPhased(ph.inMode(HjPhaserMode.SIG_WAIT), () -> {

13. // A3 (SIG_WAIT mode)

14. doA3Phase1(); next(); doA3Phase2(); });

15. });

15

Task A4 has been moved up to line 6. Does this change the computation graph for slide 7? If so, draw the new computation graph. If
not, explain why the computation graph is the same.

