
COMP 322: Fundamentals of Parallel Programming

Lecture 8: Computation Graphs, Ideal Parallelism

Mack Joyner and Zoran Budimlić

{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322	 Lecture 8 January 2022

http://comp322.rice.edu

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Computation Graphs

• A Computation Graph (CG) captures the dynamic execution of a parallel program, for a
specific input

• CG nodes are “steps” in the program’s execution

— A step is a sequential subcomputation without any spawned, begin-finish or end-finish operations

• CG edges represent ordering constraints

— “Continue” edges define sequencing of steps within a task

— “Spawn” edges connect parent tasks to child spawned tasks

— “Join” edges connect the end of each spawned task to its IEF’s end-must finish

operations

• All computation graphs must be acyclic

—It is not possible for a node to depend on itself

• Computation graphs are examples of “directed acyclic graphs” (DAGs)

2

1. must finish { // F1

2. spawn { A; }

3. must finish { // F2

4. spawn { B1; }

5. spawn { B2; }

6. } // F2

7. B3;

8. } // F1

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Which statements can potentially be executed

in parallel with each other?

3

F1-endF1-start F2-start F2-end

A

B1

B2

B3

Computation Graph

spawn join

continue

Key idea: If two statements, X and Y,

have no path of directed edges from

one to the other, then they can run in

parallel with each other.

Assume you have 2 washers and 2 dryers. Assume there’s 0 cost to spawn a task.

Place “must finish” blocks and “spawn” blocks around the following tasks:

1. Run load 1 in washer (LW1)

2. Run load 2 in washer (LW2)

3. Run load 1 in dryer (LD1)

4. Run load 2 in dryer (LD2)

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Computational Graph Exercise

4

Assume you have 2 washers and 2 dryers. Assume there’s 0 cost to spawn a task.

Place “must finish” blocks and “spawn” around the following tasks:

1. must fnish { // F1

2. spawn { Run load 1 in washer (LW1) }

3. spawn { Run load 2 in washer (LW2) }

4.} // F1

5. spawn { Run load 1 in dryer (LD1) }

6. spawn { Run load 2 in dryer (LD2) }

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Computational Graph Exercise (Solution #1)

5

Assume you have 2 washers and 2 dryers. Assume there’s 0 cost to spawn a task.

Place “must finish” blocks and “spawn” around the following tasks:

1. must fnish { // F1

2. spawn { Run load 1 in washer (LW1); Run load 1 in dryer (LD1) }

3. spawn { Run load 2 in washer (LW2); Run load 2 in dryer (LD2) }

4.} // F1

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Computational Graph Exercise (Solution #2)

6

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Draw Computation Graph for Solution

7

1. must finish { // F1

2. spawn LW1;

3. spawn LW2;

4.} // F1

5. spawn LD1;

6. spawn LD2;

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Draw Computation Graph for Solution #1

8

F1-endF1-start

LW1

LD2LW2

LD1

Computation Graph

spawn join

continue

Key idea: If two statements, X and Y,

have no path of directed edges from

one to the other, then they can run in

parallel with each other.

1. must finish { // F1

2. spawn { LW1; LD1 }

3. spawn { LW2; LD2 }

4.} // F1

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Draw Computation Graph for Solution #2

9

F1-endF1-start

LW1

LD2LW2

LD1

Computation Graph

spawn join

continue

Key idea: If two statements, X and Y,

have no path of directed edges from

one to the other, then they can run in

parallel with each other. Which solution is better?

1. must finish { // F1

2. spawn LW1;

3. spawn LW2;

4.} // F1

5. spawn LD1;

6. spawn LD2;

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Draw Computation Graph for Solution #1

10

F1-endF1-start

LW1

LD2LW2

LD1

Computation Graph

spawn join

continue

Key idea: If two statements, X and Y,

have no path of directed edges from

one to the other, then they can run in

parallel with each other.

20

10 20

10

1. must finish { // F1

2. spawn { LW1; LD1 }

3. spawn { LW2; LD2 }

4.} // F1

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Draw Computation Graph for Solution #2

11

F1-endF1-start

LW1

LD2LW2

LD1

Computation Graph

spawn join

continue

Key idea: If two statements, X and Y,

have no path of directed edges from

one to the other, then they can run in

parallel with each other.

20

20

10

10

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Complexity Measures for Computation Graphs

Define

• TIME(N) = execution time of node N

• WORK(G) = sum of TIME(N), for all nodes N in CG G

—WORK(G) is the total work to be performed in G

• CPL(G) = length of a longest path in CG G, when adding up execution times of
all nodes in the path

—Such paths are called critical paths
—CPL(G) is the length of these paths (critical path length, also referred to as

the span of the graph)

—CPL(G) is also the shortest possible execution time for the computation graph

12

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Ideal Parallelism

• Define ideal parallelism of
Computation G Graph as the
ratio, WORK(G)/CPL(G)

• Ideal Parallelism only depends
on the computation graph, and is
the speedup that you can obtain
with an unbounded number of
processors

13

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1
Example:

WORK(G) = 26

CPL(G) = 11

Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

Does ideal parallelism tell us we’ll
need at least x processors and/or at
most y processors to get max
speedup?

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Ideal Parallelism

• Define ideal parallelism of
Computation G Graph as the
ratio, WORK(G)/CPL(G)

• Ideal Parallelism only depends
on the computation graph, and is
the speedup that you can obtain
with an unbounded number of
processors

14

Example:

WORK(G) = 26

CPL(G) = 11

Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

Does ideal parallelism tell us we’ll
need at least x processors and/or at
most y processors to get max
speedup?

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Which Computation Graph has more ideal parallelism?

Assume that all nodes have TIME = 1, so WORK = 10 for both graphs.

15

Computation Graph 1 Computation Graph 2

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Announcements & Reminders
•IMPORTANT:

—Watch videos for topics 1.1, 4.5 for next lecture

• HW 1 is due on Friday, Feb 4th

• Quiz 2 is due on Sunday, Feb 6th

• Worksheets due same day by 11:59pm for full credit, before next class for partial credit (0.5)

• Module 1 handout is available

• See course web site for syllabus, work assignments, due dates, …

• http://comp322.rice.edu

16

https://canvas.rice.edu/courses/1844/pages/videos-for-unit-1-task-level-parallelism?module_item_id=44098
http://comp322.rice.edu

