
COMP 322: Fundamentals of Parallel Programming

Lecture 9: Async, Finish, Data-Driven Tasks

Mack Joyner and Zoran Budimlić

{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322	 Lecture 9	 January 2022

http://comp322.rice.edu

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Async and Finish Statements for Task Creation and Termination
async S

• Creates a new child task
that executes statement S

2

finish S

! Execute S, but wait until

all asyncs in S’s scope
have terminated.

// T0(Parent task)

STMT0;

finish { //Begin finish

 async {

 STMT1; //T1(Child task)
 }

 STMT2; //Continue in T0

} //End finish (wait for T1)

STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Example of a Sequential Program: Computing sum of array elements

3

COMP 322

Spring 2015

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

0 Introduction

0.1 What is Parallel Programming?

Since the dawn of early digital computers and the Von Neumann computing model [6]1, programming
has been viewed as a sequential abstraction of computation. Sequential programming is a step-by-step
specification of each operation in a computation as a sequence — a program is a sequence of statements,
a loop is a sequence of iterations, an expression is a sequence of operations, and so on. The sequential
programming model has served the computing industry well for over six decades as the default model
for the vast majority of programming languages. Sequential programming has also simplified reasoning
about program execution because a sequential program always performs its operations in a predefined order.
However, in many respects, sequential programming can be considered “unnatural” because many application
domains modeled by software (e.g., physical systems, social networks) are inherently parallel rather than
sequential.

The concept of parallelism is often used to denote multiple events occurring side-by-side in space and time. In
Computer Science, we use it to denote simultaneous computation of operations on multiple processing units.
Thus, parallel programming is a specification of operations in a computation that can be executed in parallel
on di↵erent processing units. This course will focus on the fundamental concepts that underlie parallel
programming so as to provide you with the foundations needed to understand any parallel programming
model that you encounter in the future.

To introduce you to a concrete example of parallel programming, let us first consider the following sequential
algorithm for computing the sum of the elements of an array of numbers, X:

Algorithm 1: Sequential ArraySum

Input: Array of numbers, X.

Output: sum = sum of elements in array X.

sum 0;

for i 0 to X.length� 1 do

sum sum+X[i];

return sum;

This algorithm is simple to understand since it sums the elements of X sequentially from left to right.
However, we could have obtained the same algebraic result by summing the elements from right to left
instead. This over-specification of the ordering of operations in sequential programs has been classically
referred to as the Von Neumann bottleneck [1]. The left-to-right evaluation order in Algorithm 1 can be
seen in the computation graph shown in Figure 1. We will study computation graphs formally later in the
course. For now, think of each node or vertex (denoted by a circle) as an operation in the program and each
edge (denoted by an arrow) as an ordering constraint between the operations that it connects, due to the
flow of the output from the first operation to the input of the second operation. It is easy to see that the
computation graph in Figure 1 is sequential because the edges enforce a linear order among all nodes in the
graph.

How can we go about converting Algorithm 1 to a parallel program? The answer depends on the parallel
programming constructs that are available for our use. Let’s use the word, task, to denote a sequential
subcomputation of a parallel program. A task can be made as small or as large as needed. We can think
of the start of program execution as a single root task. We now informally introduce two constructs, async
and finish2:

• The statement “async hstmt1i” causes the parent task to create a new child task to execute the body of

1
These lecture notes include citation such as [6] as references for optional further reading.

2
These constructs have some similarities to the “fork” and “join” constructs available in many languages, but there are

notable di↵erences as well, as you will learn later in the course.

2 of 13

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Parallelization Strategy for 2 cores (Two-way Parallel Array Sum)

Basic idea:

•Decompose problem into two tasks for partial sums

•Combine results to obtain final answer

• Parallel divide-and-conquer pattern

Task 0: Compute sum
of lower half of array

Task 1: Compute sum
of upper half of array

+"

4

Compute total sum

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Two-way Parallel Array Sum using async & finish constructs

5

COMP 322

Spring 2015

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

+
+

+

X[0]

X[1]

X[2]

…

0

Figure 1: Computation graph for Algorithm 1 (Sequential ArraySum)

the async, hstmt1i, asynchronously (i.e., before, after, or in parallel) with the remainder of the parent
task.

• The statement “finish hstmt2i” causes the parent task to execute the body of the finish, hstmt2i, and
then wait until all async tasks created within hstmt2i have completed.

The notation, hstmti, refers to any legal program statement e.g., if-then-else, for-loop, method call, or a block
enclosed in { } braces. Async and finish statements may be arbitrarily nested, so they can be contained in
hstmti too. (The use of angle brackets in “hstmti” follows a standard notational convention to denote units of
a program. They are unrelated to the < and > comparison operators used in many programming languages.)

We can use async and finish to obtain a simple parallel program for computing an array sum as shown in
Algorithm 2. The graph structure for Algorithm 2 is shown in Figure 2. Note that it di↵ers from Figure 1
since there is no edge or sequence of edges connecting Tasks T2 and T3. This indicates that tasks T2 and T3
can execute in parallel with each other; for example, if your computer has two processor cores, T2 and T3
can be executed on two di↵erent processors at the same time. We will see much richer examples of parallel
programs using async, finish and other constructs during the course.

Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.

Output: sum = sum of elements in array X.

// Start of Task T1 (main program)
sum1 0; sum2 0;

// Compute sum1 (lower half) and sum2 (upper half) in parallel.
finish{

async{
// Task T2
for i 0 to X.length/2� 1 do

sum1 sum1 +X[i];

};
async{

// Task T3
for i X.length/2 to X.length� 1 do

sum2 sum2 +X[i];

};
};
// Task T1 waits for Tasks T2 and T3 to complete
// Continuation of Task T1
sum sum1 + sum2;

return sum;

3 of 13

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Two-way Parallel Array Sum using async & finish constructs

6

COMP 322

Spring 2015

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

+
+

+

X[0]

X[1]

X[2]

…

0

Figure 1: Computation graph for Algorithm 1 (Sequential ArraySum)

the async, hstmt1i, asynchronously (i.e., before, after, or in parallel) with the remainder of the parent
task.

• The statement “finish hstmt2i” causes the parent task to execute the body of the finish, hstmt2i, and
then wait until all async tasks created within hstmt2i have completed.

The notation, hstmti, refers to any legal program statement e.g., if-then-else, for-loop, method call, or a block
enclosed in { } braces. Async and finish statements may be arbitrarily nested, so they can be contained in
hstmti too. (The use of angle brackets in “hstmti” follows a standard notational convention to denote units of
a program. They are unrelated to the < and > comparison operators used in many programming languages.)

We can use async and finish to obtain a simple parallel program for computing an array sum as shown in
Algorithm 2. The graph structure for Algorithm 2 is shown in Figure 2. Note that it di↵ers from Figure 1
since there is no edge or sequence of edges connecting Tasks T2 and T3. This indicates that tasks T2 and T3
can execute in parallel with each other; for example, if your computer has two processor cores, T2 and T3
can be executed on two di↵erent processors at the same time. We will see much richer examples of parallel
programs using async, finish and other constructs during the course.

Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.

Output: sum = sum of elements in array X.

// Start of Task T1 (main program)
sum1 0; sum2 0;

// Compute sum1 (lower half) and sum2 (upper half) in parallel.
finish{

async{
// Task T2
for i 0 to X.length/2� 1 do

sum1 sum1 +X[i];

};
async{

// Task T3
for i X.length/2 to X.length� 1 do

sum2 sum2 +X[i];

};
};
// Task T1 waits for Tasks T2 and T3 to complete
// Continuation of Task T1
sum sum1 + sum2;

return sum;

3 of 13

foo();

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Two-way Parallel Array Sum using futures

7

foo();

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

x = a + b;

y = b * 7;

z = (x-y) * (x+y);

7
a b

x y
1 2

3 4

5An operator executes when all its input
values are present; copies of the result value
are distributed to the destination operators.

Example instruction sequence and its dataflow graph

8

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Macro-Dataflow Programming
• “Macro-dataflow” = extension of dataflow
model from instruction-level to task-level
operations

• General idea: build an arbitrary task
graph, but restrict all inter-task
communications to single-assignment
variables (like futures)

• Static dataflow ==> graph fixed when
program execution starts

• Dynamic dataflow ==> graph can grow
dynamically

• Semantic guarantees: race-freedom,
determinism

• “Deadlocks” are possible due to
unavailable inputs (but they are
deterministic)

Communication via “single-assignment”
variables

9

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Extending HJ Futures for Macro-Dataflow: 
Data-Driven Futures (DDFs)

final HjDataDrivenFuture<T1> ddfA = newDataDrivenFuture();

• Allocate an instance of a data-driven-future object (container)

• Object in container must be of type T1, and can only be assigned once via put()
operations

• HjDataDrivenFuture extends the HjFuture interface

ddfA.put(V) ;

• Store object V (of type T1) in ddfA, thereby making ddfA available

• Single-assignment rule: at most one put is permitted on a given DDF

10

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Extending HJ Futures for Macro-Dataflow: 
Data-Driven Tasks (DDTs)

asyncAwait(ddfA, ddfB, …, () -> Stmt);

• Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, … become available (i.e.,
after task becomes “enabled”)

• Alternatively, you can pass a list to asyncAwait

• Await clause can be used to implement “nodes” and “edges” in a computation graph

ddfA.get()

• Return value (of type T1) stored in ddfA

• Throws an exception if put() has not been performed

ddfA.safeGet()

• Doesn’t throw an exception

— Should be performed by async’s that contain ddfA in their await clause, or if there’s some other

synchronization to guarantee that the put() was performed

11

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

1. finish(() -> {
2. final HjDataDrivenFuture<Void> ddfA = newDataDrivenFuture();

3. final HjDataDrivenFuture<Void> ddfB = newDataDrivenFuture();

4. final HjDataDrivenFuture<Void> ddfC = newDataDrivenFuture();

5. final HjDataDrivenFuture<Void> ddfD = newDataDrivenFuture();

6. final HjDataDrivenFuture<Void> ddfE = newDataDrivenFuture();

7. asyncAwait(ddfA, () -> { ... ; ddfB.put(…); }); // Task B

8. asyncAwait(ddfA, () -> { ... ; ddfC.put(…); }); // Task C

9. asyncAwait(ddfB, ddfC, ()->{ ... ; ddfD.put(…); }); // Task D

10. asyncAwait(ddfC, () -> { ... ; ddfE.put(…); }); // Task E

11. asyncAwait(ddfD, ddfE, () -> { ... }); // Task F

12. // Note that creating a “producer” task after its “consumer”

13. // task is permitted with DDFs & DDTs, but not with futures

14. async(() -> { ... ; ddfA.put(…); }); // Task A

15. }); // finish

Converting previous Future example to

Data-Driven Futures and AsyncAwait Tasks

12

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

What is Deadlock?
• A parallel program execution contains a deadlock if some task’s execution remains incomplete due to it

being blocked indefinitely awaiting some condition

• Example of a program with a deadlocking execution

final HJDataDrivenFuture<Object> left = newDataDrivenFuture();

final HJDataDrivenFuture<Object> right = newDataDrivenFuture();

finish {

 asyncAwait (left) right.put(rightBuilder()); // Task1

 asyncAwait (right) left.put(leftBuilder()); // Task2

}

• In this case, Task1 and Task2 are in a deadlock cycle.

• HJ-Lib has a deadlock detection debug option, which can be enabled as follows:

• System.setProperty(HjSystemProperty.trackDeadlocks.propertyKey(), “true”);

• Throws an edu.rice.hj.runtime.util.DeadlockException when deadlock detected

13

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Implementing Future Tasks using DDTs

• Future version

1. var f = future(() -> { return g(); });

2. S1

3. async(() -> {

4. ... = f.get(); // blocks if needed

5. S2;

6. S3;

7. });

• DDT version

1. var f = newDataDrivenFuture();

2. async(() -> { f.put(g()) });

3. S1

4. asyncAwait(f, () -> {

5. ... = f.safeGet(); // does not need to block —- why?

6. S2;

7. S3;

8. });

14

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Differences between Futures and DDTs

• Consumer task blocks on get() for each future that it reads, whereas async-await
does not start execution till all futures are available

• Future tasks cannot deadlock, but it is possible for a DDT to block indefinitely
(“deadlock”) if one of its input futures never becomes available

• DDTs and DDFs are more general than futures

— Producer task can only write to a single future object, whereas a DDT can write to

multiple DDF objects

— The choice of which future object to write to is tied to a future task at creation time,

where as the choice of output DDF can be deferred to any point with a DDT

— Consumer DDTs can be created before the producer tasks

• DDTs and DDFs can be implemented more efficiently than futures

— An “asyncAwait” statement does not block the worker, unlike a future.get()

15

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Two Exception (error) cases for DDFs that cannot occur with futures

• Case 1: If two put’s are attempted on the same DDF, an exception is thrown because
of the violation of the single-assignment rule

— There can be at most one value provided for a future object (since it comes from the
producer task’s return statement)

• Case 2: If a get is attempted by a task on a DDF that was not in the task’s await list,
then an exception is thrown because DDF’s do not support blocking gets

— Futures support blocking gets

16

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Deadlock example with DDTs (cannot be reproduced with futures)
• A parallel program execution contains a deadlock if some task’s execution remains incomplete due to it being blocked

indefinitely awaiting some condition

1. var left = newDataDrivenFuture();

2. var right = newDataDrivenFuture();

3. finish(() -> {

4. asyncAwait(left, () -> {

5. right.put(rightWriter()); });

6. asyncAwait(right, () -> {

7. left.put(leftWriter()); });

8. });

• HJ-Lib has deadlock detection mode

• Enabled using:

—System.setProperty(HjSystemProperty.trackDeadlocks.propertyKey(), “true");

—Throws an edu.rice.hj.runtime.util.DeadlockException when deadlock detected

17

Can you think of a deadlock example or explain why it can’t happen?

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Announcements & Reminders

•Regular office hour schedule can be found at Office Hours link on course web site

•Hw #1 is due Friday, Feb. 4th by 11:59pm

•Quiz #2 is due Sunday, Feb. 6th by 11:59pm

18

https://wiki.rice.edu/confluence/display/PARPROG/322OfficeHours

