
COMP 322: Fundamentals of
Parallel Programming

Lecture 36: General-Purpose GPU (GPGPU)
Computing

Guest Lecturer: Max Grossman
Founder and Principal @ 7pod Technologies

Research Scientist @ Rice U
Author, Professional CUDA C Programming

http://comp322.rice.edu/

COMP 322 Lecture 36 13 April 2018

COMP 322, Spring 2018

Worksheet #35: Solution
Finding maximal index of goal in matrix

Below is a code fragment intended to find the maximal (largest) index of a goal value that
occurs multiple times in the input matrix. What logical error(s) are there in the code?

2

1. class AsyncFinishEurekaSearchMaxIndexOfGoal {
2. HjEureka eurekaFactory() {
3. comparator = (cur, newVal) -> { // cur is initially [-1, -1]

(cur.x==newVal.x) ? (newVal.y – cur.y) : (newVal.x – cur.x) }
4. return new MaximaEureka([-1, -1], comparator)
5. }
6. int[] doWork(matrix, goal) {
7. val eu = eurekaFactory()
8. finish (eu, () -> { // eureka registration
9. forasync (0, matrix.length - 1, (r) ->
10. procRow(matrix(r), r, goal));
11. });
12. return eu.get()
13. }
14. void procRow(array, r, goal) {
15. for (int c = 0; c < array.length(); c++)
16. check([r, c]) // terminate if comparator returns negative
17. if goal.match(array(c)) offer([r, c]) // updates cur in eureka
18. } }

for (int c = array.length() - 1; c >= 0; c--)

0 … 10 … 15 …
…
5 M
…
10 M M

The task terminates when
check([r,c]) is called and the
comparator has cur smaller than
[r,c]. We need to ensure the
iteration order in our code is
such that the comparator
returning negative means we
cannot produce an offer([r’,c’])
where [r’, c’] is greater than the
value of cur.

COMP 322, Spring 2018

Why GPUs?

• Performance gap between GPUs and multicore CPUs continues to
widen

3 COMP 322, Spring 2018

COMP 322, Spring 2018

Applications of GPUs

• Google - Use GPUs internally to train deep learning models
• DoE and DoD – two of the next three supercomputers deployed by

USA Department of Energy will be GPU based
• Mayo Clinic - GPUs to improve tumor identification
• Audi - GPUs for self-driving cars
• SpaceX - GPUs for combustion modeling of the methane-based

Raptor rocket (system to be used for Mars missions)
• …

4 COMP 322, Spring 2018

COMP 322, Spring 2018

Single Instruction, Single Data stream (SISD)
A sequential computer which exploits no parallelism in either the instruction or data

streams. e.g., old single processor PC

Single Instruction, Multiple Data streams (SIMD)
A computer which exploits multiple data streams against a single instruction stream to
perform operations which may be naturally parallelized. e.g. graphics processing unit

Multiple Instruction, Single Data stream (MISD)
Multiple instructions operate on a single data stream. Uncommon architecture which is
generally used for fault tolerance. Heterogeneous systems operate on the same data
stream and must agree on the result. e.g. the Space Shuttle flight control computer.

Multiple Instruction, Multiple Data streams (MIMD)
Multiple autonomous processors simultaneously executing different instructions on
different data. e.g. a PC cluster memory space.

Flynn’s Taxonomy for Parallel
Computers

Single Instruction Multiple Instructions
Single Data SISD MISD
Multiple Data SIMD MIMD

5 COMP 322, Spring 2018

COMP 322, Spring 2018

Multicore Processors are examples of
MIMD systems

• Memory hierarchy for a single Intel Xeon Quad-core E5530
processor chip

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache
(shared by all cores)

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

6 COMP 322, Spring 2018

COMP 322, Spring 2018 8

SIMD computers
• Definition: A single instruction stream is applied to multiple data

elements.
• One program text
• One instruction counter
• Distinct data streams per Processing Element (PE)

• Examples: Vector Procs, GPUs

PE

PE

PE

PE

Source: Mattson and Keutzer, UCB
CS294

7 COMP 322, Spring 2018

COMP 322, Spring 2018

“CPU-Style” Cores
The “CPU-Style” core is designed to make individual threads speedy.

8 COMP 322, Spring 2018

Fetch/Decode

ALU (Execute)

Out-of-order control logic

Branch predictor logic

Memory pre fetch unit

Large data cache

Execution
contexts

“Execution context” == memory and hardware associated
to a specific stream of instructions (e.g. a thread)
Multiple cores lead to MIMD computers

COMP 322, Spring 2018

GPU Design Idea #1: more slow cores
The first big idea that differentiates GPU and CPU core design:

slim down the footprint of each core.

Slides and graphics based on presentations
from Andreas Klöckner and Kayvon Fatahalian

9 COMP 322, Spring 2018

Fetch/Decode

ALU (Execute)

Execution
contexts

Idea #1:

Remove the modules that
help a single instruction
execute fast.

COMP 322, Spring 2018

GPU Design Idea #1: more slow cores

See: Andreas Klöckner
and Kayvon Fatahalian

10 COMP 322, Spring 2018

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

Idea #1:

Remove the modules that
help a single instruction
execute fast.

And then replicate at a
massive scale.

COMP 322, Spring 2018

GPU Design Idea #2: lock stepping

11 COMP 322, Spring 2018

See: Andreas Klöckner
and Kayvon Fatahalian

Fetch/Decode

ALU
1

Shared Ctx Data

Ct
x

ALU
2

ALU
3

ALU
4

ALU
5

ALU
6

ALU
7

ALU
8

Ct
x

Ct
x

Ct
x

Ct
x

Ct
x

Ct
x

Ct
x

shared
memory
SIMD model

In the GPU rendering context, instruction streams are typically very similar.

Design for a “single instruction multiple data” SIMD model:
share the cost of the instruction stream across many ALUs (i.e. single program
counter for multiple “cores”)

Fetch/Decode

ALU (Execute)

Execution
contexts

COMP 322, Spring 2018

GPU Design Idea #2: branching ?

12 COMP 322, Spring 2018

See: Andreas Klöckner
and Kayvon Fatahalian

Question:

What happens when the instruction streams
include branching ?

How can they execute in lock step?

COMP 322, Spring 2018

GPU Design Idea #2: lock stepping w/
branching

13 COMP 322, Spring 2018

Non branching code;

if(flag > 0){ /* branch */
x = exp(y);
y = 2.3*x;

}
else{
x = sin(y);
y = 2.1*x;

}

Non branching code;

ALU
1

ALU
2

ALU
3

ALU
4

ALU
5

ALU
6

ALU
7

ALU
8

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T T F T T F F F

✓ ✓ X ✓ ✓ X X X

✓ ✓ X ✓ ✓ X X X

X X ✓ X X ✓ ✓ ✓

X X ✓ X X ✓ ✓ ✓

Time

The cheap branching approach means that some ALUs are idle as all ALUs
traverse all branches [executing NOPs if necessary]

In the worst possible case we could see 1/8 of maximum performance.

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

COMP 322, Spring 2018

GPU Design Idea #3: latency hiding

14 COMP 322, Spring 2018

See: Andreas Klöckner
and Kayvon Fatahalian

ALU
1

ALU
2

ALU
3

ALU
4

ALU
5

ALU
6

ALU
7

ALU
8

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Time

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

work on registers;
work on registers;
work on registers;

load registers from
main memory;

It takes O(1000) cycles to load data from
off chip memory into the SM registers file

These ALUs are idled (stalled) after a load

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

COMP 322, Spring 2018

GPU Design Idea #3: latency hiding

15 COMP 322, Spring 2018

See: Andreas Klöckner
and Kayvon Fatahalian

Fetch/Decode

ALU
1

Shared Ctx Data

Ct
x

ALU
2

ALU
3

ALU
4

ALU
5

ALU
6

ALU
7

ALU
8

Ct
x

Ct
x

Ct
x

Ct
x

Ct
x

Ct
x

Ct
x

Idea #3: enable fast context switching so the ALUs
can efficiently alternate between different tasks.

Fetch/Decode

ALU
1

ALU
2

ALU
3

ALU
4

ALU
5

ALU
6

ALU
7

ALU
8

1 2

3 4

COMP 322, Spring 2018

GPU Design Idea #3: context switching

Body Level Five

16 COMP 322, Spring 2018

See: Andreas Klöckner
and Kayvon Fatahalian

ALU
1

ALU
2

ALU
3

ALU
4

ALU
5

ALU
6

ALU
7

ALU
8

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ti
me

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ctx1: work on registers;
Ctx1: work on registers;
Ctx1: work on registers;
Ctx1: load request, switch context;✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ctx3: work on registers;
Ctx3: work on registers;
Ctx3: work on registers;
Ctx3: load request, switch context;✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ctx2: work on registers;
Ctx2: work on registers;
Ctx2: work on registers;
Ctx2: load request, switch context;

Ctx1: load done so continue

COMP 322, Spring 2018

Summary: CPUs and GPUs have
fundamentally different design philosophies

GPU = Graphics Processing Unit

GPUs are provided to accelerate graphics, but they can also be used
for non-graphics applications that exhibit large amounts of data
parallelism and require large amounts of “streaming” throughput
⇒ SIMD parallelism within an SM, and SPMD parallelism across SMs
17 COMP 322, Spring 2018

COMP 322, Spring 2018

Host vs. Device

18 COMP 322, Spring 2018

COMP 322, Spring 2018

Host vs. Device
• The GPU has its own independent memory space.
• The GPU brick is a separate compute sidecar.
• We refer to:

— the GPU as a “DEVICE”
— the CPU as the “HOST”

• An array that is in HOST-attached memory is not directly visible to the
DEVICE, and vice versa.

• To load data onto the DEVICE from the HOST:
— We allocate memory on the DEVICE for the array
— We then copy data from the HOST array to the DEVICE array

• To retrieve results from the DEVICE they have to be copied from the
DEVICE array to the HOST array.

19 COMP 322, Spring 2018

COMP 322, Spring 2018

Execution of a CUDA program
Host Code

(small number of threads)

. . .

. . .

Device Kernel
(large number of threads)

Host Code
(small number of threads)

Device Kernel
(large number of threads)

Host Code
(small number of threads)

20 COMP 322, Spring 2018

Explicit host-device communication

Explicit host-device communication

Explicit host-device communication

Explicit host-device communication

COMP 322, Spring 2018

Outline of a CUDA main program

Body Level Five

21 COMP 322, Spring 2018

__global__ void kernel(arguments) {

instructions for a single GPU thread;
}

...

main(){

set up GPU arrays;

copy CPU data to GPU;

kernel <<< # thread blocks, # threads per block >>>
(arguments);

copy GPU data to CPU;

}

Runs on
device

Runs on
host

COMP 322, Spring 2018

CUDA Storage Classes + Thread
Hierarchy

• Local Memory: per-thread
— Private per thread
— Auto variables, register spill

• Shared Memory: per-block
— Shared by threads of the same block
— Inter-thread communication

• Global Memory: per-application
— Shared by all threads
— Inter-Grid communication

Thread

Local Memory

Grid 0

. . .
Global

Memory

. . .

Grid 1
Sequential
Grids
in Time

Block

Shared
Memory

22 COMP 322, Spring 2018

COMP 322, Spring 2018

CUDA Software Stack

Figure Credit: NVIDIA CUDA Compute Unified Device Architecture Programming Guide 1.1

Today we will
focus mostly
on the CUDA
Runtime level

COMP 322, Spring 2018

CUDA = Common Unified Device Architecture
Note: OpenCL is another framework for programming GPUs

COMP 322, Spring 2018

Process Flow of a CUDA Kernel Call
(Compute Unified Device Architecture)

• Data parallel programming architecture from NVIDIA
— Execute programmer-defined kernels on extremely

parallel GPUs
— CUDA program flow:

1. Push data on device
2. Launch kernel
3. Execute kernel and memory accesses in

parallel
4. Pull data off device

• Device threads are launched in batches
— Blocks of Threads, Grid of Blocks

• Explicit device memory management
— cudaMalloc, cudaMemcpy, cudaFree, etc.

• NOTE: OpenCL is a newer standard for GPU
programming that is more portable than CUDA

Figure source: Y. Yan et. al “JCUDA: a
Programmer Friendly Interface for
Accelerating Java Programs with CUDA.”
Euro-Par 2009.

24 COMP 322, Spring 2018

COMP 322, Spring 2018

CUDA Host-Device Data Transfer
cudaError_t cudaMemcpy(void* dst, const void* src, size_t count,

enum cudaMemcpyKind kind)
(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memo
ry

Thread (0,
0)

Registe
rs

Local
Memo
ry

Thread (1,
0)

Registe
rs

Block (1, 0)

Shared Memory

Local
Memo
ry

Thread (0,
0)

Registe
rs

Local
Memo
ry

Thread (1,
0)

Registe
rs

Host

25 COMP 322, Spring 2018

Copies from the memory area pointed to by
src to the memory area pointed to by dst,
where kind is one of

— cudaMemcpyHostToHost
— cudaMemcpyHostToDevice
— cudaMemcpyDeviceToHost
— cudaMemcpyDeviceToDevice

COMP 322, Spring 2018

Matrix multiplication kernel code in CUDA ---
SPMD model with 2D index (threadIdx)

// Matrix multiplication kernel - thread specification
__global__ void MatrixMulKernel(float *Md, float *Nd, float *Pd,

int Width) {
// 2D Thread ID
int tx = threadIdx.x;
int ty = threadIdx.y;

// Pvalue stores the Pd element that is computed by this thread
float Pvalue = 0;

for (int k = 0; k < Width; k++) {
float Mdelement = Md[ty * Width + k];
float Ndelement = Nd[k * Width + tx];
Pvalue += Mdelement * Ndelement;

}

// Write the matrix to device memory, each thread writes on element
Pd[ty * Width + tx] = Pvalue;

}

26 COMP 322, Spring 2018

COMP 322, Spring 2018

Host Code in C for Matrix Multiplication
1. void MatrixMultiplication(float* M, float* N, float* P, int Width) {
2. int size = Width*Width*sizeof(float); // matrix size
3. float* Md, Nd, Pd; // pointers to device arrays
4. cudaMalloc((void**)&Md, size); // allocate Md on device
5. cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); // copy M to Md
6. cudaMalloc((void**)&Nd, size); // allocate Nd on device
7. cudaMemcpy(Nd, M, size, cudaMemcpyHostToDevice); // copy N to Nd
8. cudaMalloc((void**)&Pd, size); // allocate Pd on device

9. dim3 dimBlock(Width,Width); dim3 dimGrid(1,1);
10. // launch kernel (equivalent to “async at(GPU), forall, forall”
11. MatrixMulKernel<<<dimGrid,dimBlock>>>(Md, Nd, Pd, Width);

12. cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost); // copy Pd to P
13. // Free device matrices
14. cudaFree(Md); cudaFree(Nd); cudaFree(Pd);
15.}

27 COMP 322, Spring 2018

COMP 322, Spring 2018

CUDA construct Related HJ/Java constructs

Kernel invocation,
<<<. . .>>>

async at(gpu-place)

1D/2D grid with 1D/2D/3D
blocks of threads

Outer 1D/2D forall with inner 1D/2D/3D forall

Intra-block barrier,
__syncthreads()

HJ forall-next on implicit phaser for inner forall

cudaMemcpy() No direct equivalent in HJ/Java (can use
System.arraycopy() if needed)

Storage classes: local,
shared, global

No direct equivalent in HJ/Java (method-local
variables are scalars)

Summary of key features in CUDA

28 COMP 322, Spring 2018

