COMP 322: Parallel and Concurrent Programming

Lecture 38: Concurrent and Parallel Languages and Frameworks

Zoran Budimli¢ and Mack Joyner
{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 38 18 April 2022

http://comp322.rice.edu

What have we learned in this course?

Functional programming for parallelism
Lazy computation, streams

Futures and promises

Data-driven programming approach
Computation graphs and their properties
Map/Reduce programming model
Data-parallel programming model

Loop parallelism

Locality control

Handling concurrency while avoiding deadlock/livelock/starvation
Barrier and point-to-point synchronization
Actor programming model

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

D
)2

Habanero

Habanero-Java and Habanero-C

Async/finish, futures/promises, loop parallelism, phasers, locality control, actors, isolation
HJlib is a library implementation of these features

Still developed and improved

Python, Scala, Rust, X10, OpenMP, Chapel, Java, C/C++
There’s also PCDP-Java

» Coursera equivalent of COMP 322

No streams

https://habanero.cc.gatech.edu/

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

X10

Designed and developed at IBM
One of the original “Next-generation” Asynchronous Partitioned Global Address Space projects

Ancestor of Habanero Java

Originally based on Java, later switched to Scala

Async, finish, loop parallelism, clocks (phasers), locality control
No abstract metrics, data-driven execution, actors, streams

http://x10-lang.org/

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

8
)2

Chapel

Designed, implemented and maintained by Cray
Partitioned Global Address Space

Loop parallelism, task parallelism

Locality control

Distributed system execution

Tasks, futures, promises

No phasers, actors, abstract metrics, data-driven execution

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

~N\
S CHAPEL
=

https://chapel-lang.org/

Kotlin

From the creators of Intellid

Based on Java

Multi-paradigm programming language

- Functional, object-oriented

Lots of support for functional programing

More compact than Java

Fully interoperable with Java

Support for coroutines: very similar to asyncs and future tasks
Low-level synchronization between tasks

Channels

No loop parallelism, phasers, abstract metrics, streams, locality control, actors
https://kotlinlang.org/

& Kotlin

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

Go

Multi-paradigm, object-oriented, concurrent language

Goroutines (asyncs) P—
Channels

Concurrency control structures
» Sending messages between coroutines
No phasers, loop parallelism, futures/promises, abstract metrics, actors, locality control

https://go.dev/

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

Rust

Multi-paradigm programming language
Threads

Message passing

Shared-state safe concurrency
Extensible concurrency with Sync (similar to Java Synchronized) and Send traits
No phasers, loop parallelism, async/finish, futures/promises, actors, locality

https:/www.rust-lang.org/

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

Cilk/Cilk++

Language developed at MIT

» Commercialized and bought by Intel

Task-parallel programming model

Lots of advances in the work-stealing load balancing runtime techniques
Implicit “finish™ for every function

No loop parallelism, phasers, abstract metrics, actors

https://cilk.mit.edu/

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

10

Python/Ray

Library based approach

Aimed at data science, machine learning, data processing
Futures and actors

No task-level parallelism on shared memory

No abstract metrics, phasers, loop parallelism

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

oop RAY

https:/www.ray.io/

11

Scala

Functional, Java-based multiparadigm language
Futures/promises

Channels

Data-driven programming model

Actors

No abstract metrics, phasers

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

£ Scala

https:/www.scala-lang.org/

.-.98
2

12

Haskell

Functional programming language

Lazy computation!

Haskell threads

"‘Pure” parallelism - deterministic

No race conditions, no deadlocks

Concurrency between |0 and computation
Synchronizing variables

Channels, futures, promises

par, pseq, force functions

No loop paralelism, abstract metrics, phasers, actors

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

https:/www.haskell.org

https://www.haskell.org

13

CnC

Data-driven programming model
Language and library based / [O

Java, C, C++, Scala, Python CnC
Tagged computation and data

Easy to distribute

Easy to checkpoint/restart

Locality control

No phasers, loop parallelism, futures/promises, abstract metrics, actors

https://icnc.github.io/

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

14

Intel Threading Building Blocks

Library-based

C/C++

Work-stealing runtime

Tasks (asyncs), loop parallelism, locality control, concurrency mechanisms
Parallel reductions, maps, filters

No futures/promises, abstract metrics, phasers, actors

https:/www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html#gs.xrs06b

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

.-}8
2

15

Hadoop

Map/Reduce programming model A

Based on Java i@hadﬂﬂﬁl
Distributed programming model for large scale computation

No shared memory concurrency, async/finish, futures/promises, loop parallelism

https://hadoop.apache.org/

8
50

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

@>.;

16

Spark

Map/Reduce programming model

Python, SQL, Scala, Java, R

Distributed programming model for large scale computation
Highly optimized in-memory computation

No asyncs, futures/promises, loop parallelism, shared-memory synchronization

https://spark.apache.org/

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

SparK

17

OpenSHMEM

Library-based approach

Partitioned Global Address Space

Make the distributed memory “look” like a shared memory
One-sided communication
Collective (barrier) synchronization
Locality control, atomic operations
Mostly C/C++ based
Implementations for modern supercomputers with modern networking subsystems
No asyncs, futures/promises, abstract metrics, actors, streams

http://openshmem.org

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

18

OpenMP

Compiler/language extensions for existing languages

C/C++ and Fortran

Annotation (pragma) based approach

Widely supported by modern C++ compilers

Designed for shared-memory systems

Loop parallelism, tasks, locality control

Extensions for GPU programming

No phasers, abstract metrics, streams, futures/promises, actors

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

OpenVIP

https:/www.openmp.org/

19

MPI

Library framework

Message-passing programming model

Designed for distributed systems

Implementations on top of several programming languages

A7 WP

» C/C++
- Java
» Fortran

- Julia, MATLAB, OCaml, Python, R

Implementations for most modern supercomputers
No tasking, futures/promises, abstract metrics, streams, phasers
"MPI + X" is still the most dominant approach, with X being OpenMP most of the time

https:/www.open-mpi.org/

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

/@.;

20

Summary

Concurrent and parallel programming is becoming pervasive

Many languages and frameworks support some aspects

Most of them do not support all aspects of concurrent and parallel programming
It's possible to build additional features on top of a few basic ones

You have learned most of the basic concepts in COMP 322

COMP 322, Spring 2022 (Z. Budimli¢, M. Joyner)

8
)2

