
COMP 322: Fundamentals of Parallel Programming

Lecture 39: Review of Lectures 19-35 (Scope of Exam 2)

Mack Joyner and Zoran Budimlić
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 39 April 2022

mailto:zoran%7D@rice.edu
http://comp322.rice.edu

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Announcements & Reminders

• The Final exam (in Canvas) is Saturday, April 30th from 7pm - 10pm.
— You may reschedule the exam time if you have a conflict
— Exam is open notes, slides, handouts, canvas videos
— Closed IntelliJ or any other executable platform

• Quiz #8 is due today at 11:59pm

2

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

HJ isolated construct (start of Module 2, Concurrency)
isolated (() -> <body>);

• Isolated construct identifies a critical section

• Two tasks executing isolated constructs are guaranteed to perform them in mutual exclusion
!Isolation guarantee applies to (isolated, isolated) pairs of constructs, not to (isolated, non-isolated) pairs of

constructs

• Isolated constructs may be nested

— An inner isolated construct is redundant

• Blocking parallel constructs are forbidden inside isolated constructs

—Isolated constructs must not contain any parallel construct that performs a blocking operation e.g., finish,
future get, next

—Non-blocking async operations are permitted, but isolation guarantee only applies to creation of async, not to
its execution

• Isolated constructs can never cause a deadlock

— Other techniques used to enforce mutual exclusion (e.g., locks — which we will learn later) can lead to a
deadlock, if used incorrectly

3

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Object-based isolation
isolated(obj1, obj2, …, () -> <body>)

• In this case, programmer specifies list of objects for which isolation is required

• Mutual exclusion is only guaranteed for instances of isolated constructs that
have a common object in their object lists

—Serialization edges are only added between isolated steps with at least one
common object (non-empty intersection of object lists)

—Standard isolated is equivalent to “isolated(*)” by default i.e., isolation across
all objects

• Inner isolated constructs are redundant — they are not allowed to “add” new
objects

4

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree
4. boolean makeParent(final V n) {
5. return isolatedWithReturn(this, () -> {
6. if (parent == null) { parent = n; return true; }
7. else return false; // return true if n became parent
8. });
9. } // makeParent
10. void compute() {
11. for (int i=0; i<neighbors.length; i++) {
12. final V child = neighbors[i];
13. if (child.makeParent(this))
14. async(() -> { child.compute(); });
15. }
16. } // compute
17. } // class V
18. . . .
19. root.parent = root; // Use self-cycle to identify root
20. finish(() -> { root.compute(); });
21. . . .

Parallel Spanning Tree Algorithm using
object-based isolated construct

5

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Worksheet: Abstract Metrics with Object-based Isolated Constructs

1. finish(() -> {
2. // Assume X is an array of distinct objects
3. for (int i = 0; i < 5; i++) {
4. async(() -> {
5. doWork(2);
6. isolated(X[i], X[i+1],
7. () -> { doWork(1); });
8. doWork(2);
9. }); // async
10. } // for
11. }); // finish

6

Compute the WORK and CPL metrics for this program with an object-based isolated construct. Indicate if your
answer depends on the execution order of isolated constructs. Since there may be multiple possible
computation graphs (based on serialization edges), try and pick the worst-case CPL value across all
computation graphs.

Answer: WORK = 25, CPL = 7.

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Read-Write Object-based isolation in HJ
isolated(readMode(obj1),writeMode(obj2), …, () -> <body>);
• Programmer specifies list of objects as well as their read-write modes for which isolation is required
• Not specifying a mode is the same as specifying a write mode (default mode = read + write)
• Mutual exclusion is only guaranteed for instances of isolated statements that have a non-empty intersection in their object lists such that

one of the accesses is in writeMode
• Sorted List example
1. public boolean contains(Object object) {
2. return isolatedWithReturn(readMode(this), () -> {
3. Entry pred, curr;
4. ...
5. return (key == curr.key);
6. });
7. }
8.
9. public int add(Object object) {
10. return isolatedWithReturn(writeMode(this), () -> {
11. Entry pred, curr;
12. ...
13. if (...) return 1; else return 0;
14. });
15. }

7

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

java.util.concurrent.AtomicInteger methods and their equivalent isolated constructs
(pseudocode)

8

Methods in java.util.concurrent.AtomicInteger class and their equivalent HJ isolated statements.
Variable v refers to an AtomicInteger object in column 2 and to a standard non-atomic Java object in
column 3. val refers to a field of type int.

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. AtomicReference<V> parent; // output value of parent in spanning tree
4. boolean makeParent(final V n) {
5. // compareAndSet() is a more efficient implementation of
6. // object-based isolation
7. return parent.compareAndSet(null, n);
8. } // makeParent
9. void compute() {
10. for (int i=0; i<neighbors.length; i++) {
11. final V child = neighbors[i];
12. if (child.makeParent(this))
13. async(() -> { child.compute(); });
14. }
15. } // compute
16.} // class V
17.. . .
18.root.parent = root; // Use self-cycle to identify root
19.finish(() -> { root.compute(); });
20.. . .

Worksheet: Atomic Variables represent a special (and more efficient)
case of object-based isolation

9

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Synchronized statements and methods in Java (Lecture 21)
• Every Java object has an associated lock acquired via:
— synchronized statements

– synchronized(foo) { // acquire foo’s lock 
 // execute code while holding foo’s lock 
} // release foo’s lock

— synchronized methods
– public synchronized void op1() { // acquire ‘this‘ lock 

 // execute method while holding ‘this’ lock 
} // release ‘this’ lock

• Locking and unlocking are automatic
— Locks are released when a synchronized block exits

• By normal means: end of block reached, return, break
• When an exception is thrown and not caught

10

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Deadlock example with Java synchronized statement

• The code below can deadlock if leftHand() and rightHand() are called concurrently from
different threads

— Because the locks are not acquired in the same order

 public class ObviousDeadlock {
 . . .
 public void leftHand() {
 synchronized(lock1) {
 synchronized(lock2) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 }

11

 public void rightHand() {
 synchronized(lock2) {
 synchronized(lock1) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }
 }

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Deadlock avoidance in HJ with object-based isolation

• HJ implementation ensures that all locks are acquired in the same order
• ==> no deadlock

 public class ObviousDeadlock {
 . . .
 public void leftHand() {
 isolated(lock1,lock2) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }

12

 public void rightHand() {
 isolated(lock2, lock1) {
 for (int i=0; i<10000; i++)
 sum += random.nextInt(100);
 }
 }
 }

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

java.util.concurrent.locks.Lock interface
1. interface Lock {

2. // key methods

3. void lock(); // acquire lock

4. void unlock(); // release lock

5. boolean tryLock(); // Either acquire lock (returns true), or return false if lock is not obtained.

6. // A call to tryLock() never blocks!

7.

8. Condition newCondition(); // associate a new condition

9. }

java.util.concurrent.locks.Lock interface is implemented by java.util.concurrent.locks.ReentrantLock class

13

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Worksheet: Use of trylock()
Rewrite the transferFunds() method below to use j.u.c. locks with calls to tryLock instead of synchronized.

Your goal is to write a correct implementation that never deadlocks, unlike the buggy version below (which
can deadlock).

Assume that each Account object already contains a reference to a ReentrantLock object dedicated to that
object e.g., from.lock() returns the lock for the from object. Sketch your answer using pseudocode.

1. public void transferFunds(Account from, Account to, int amount) {
2. synchronized (from) {
3. synchronized (to) {
4. from.subtractFromBalance(amount);
5. to.addToBalance(amount);
6. }
7. }
8. }

14

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Worksheet: Use of trylock()
Rewrite the transferFunds() method below to use j.u.c. locks with calls to tryLock instead of synchronized.

Your goal is to write a correct implementation that never deadlocks, unlike the buggy version below (which can deadlock).

Assume that each Account object already contains a reference to a ReentrantLock object dedicated to that object e.g.,
from.lock() returns the lock for the from object. Sketch your answer using pseudocode.

1. public void transferFunds(Account from, Account to, int amount) {
2. while (true) {
3. // assume that trylock() does not throw an exception
4. boolean fromFlag = from.lock.trylock();
5. if (!fromFlag) continue;
6. boolean toFlag = to.lock.trylock();
7. if (!toFlag) { from.lock.unlock(); continue; }
8. try { from.subtractFromBalance(amount);
9. to.addToBalance(amount); break; }
10. finally { from.lock.unlock(); to.lock.unlock(); }
11. } // while
12. }

15

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

java.util.concurrent.locks.ReadWriteLock interface
interface ReadWriteLock {
 Lock readLock();
 Lock writeLock();

 }

• Even though the interface appears to just define a pair of locks, the semantics of the pair of locks is coupled as
follows
—Case 1: a thread has successfully acquired writeLock().lock()

– No other thread can acquire readLock() or writeLock()

—Case 2: no thread has acquired writeLock().lock()
– Multiple threads can acquire readLock()
– No other thread can acquire writeLock()

• java.util.concurrent.locks.ReadWriteLock interface is implemented by
java.util.concurrent.locks.ReadWriteReentrantLock class

16

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Hashtable Example
class Hashtable<K,V> {
 …
 // coarse-grained, one lock for table
 ReentrantReadWriteLock lk = new ReentrantReadWriteLock();
 V lookup(K key) {
 int bucket = hasher(key);
 lk.readLock().lock(); // only blocks writers
 … read array[bucket] …
 lk.readLock().unlock();
 }
 void insert(K key, V val) {
 int bucket = hasher(key);
 lk.writeLock().lock(); // blocks readers and writers
 … write array[bucket] …

 lk.writeLock().unlock();
 }
}

17

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Linearizability of Concurrent Objects (Lecture 27)
Concurrent object
• A concurrent object is an object that can correctly handle methods invoked in parallel by different tasks or

threads
—Examples: Concurrent Queue, AtomicInteger

Linearizability
• Assume that each method call takes effect “instantaneously” at some distinct point in time between its

invocation and return.
• An execution is linearizable if we can choose instantaneous points that are consistent with a sequential

execution in which methods are executed at those points
• An object is linearizable if all its possible executions are linearizable

18

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Example 2: is this execution linearizable?

19

time

q.enq(x)

q.enq(y)

q.deq():yq.enq(x)

q.enq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Task T1

Task T2

not linearizable

http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Worksheet: Execution of concurrent implementation of FIFO queue q

Is this a linearizable execution?

20

Yes! Can be linearized as “q.enq(x) ; q.enq(y) ; q.deq():x”

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Actor Life Cycle (Lecture 28)
Actor states
" New: Actor has been created

—e.g., email account has been created

" Started: Actor can process messages
—e.g., email account has been activated

" Terminated: Actor will no longer processes messages
—e.g., termination of email account after graduation

21

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Worksheet: Interaction between finish and actors
What output will be printed if the end-finish operation is moved from line 13 to line 11 as shown below?

1. finish(() -> {
2. int threads = 4;
3. int numberOfHops = 10;
4. ThreadRingActor[] ring = new ThreadRingActor[threads];
5. for(int i=threads-1;i>=0; i--) {
6. ring[i] = new ThreadRingActor(i);
7. ring[i].start(); // like an async
8. if (i < threads - 1) {
9. ring[i].nextActor(ring[i + 1]);
10. } }
11. }); // finish
12.ring[threads-1].nextActor(ring[0]);
13.ring[0].send(numberOfHops);
14.  

22

Deadlock (no output): the end-finish
operation in line 11 waits for all the
actors started in line 7 to terminate,
but the actors are waiting for the
message sequence initiated in line 13
before they call exit().

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998

P0

P4

P3

P5

P2

P1

Time

Figure 5.6 Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0 P0 P1 P2 P3 P4 P5

(a) Pipeline structure

(b) Timing diagram

P8

P7

P9

P6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

P7P6 P8 P9

Input sequence

p " 1 n

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8

d0 d1 d2 d3 d4 d5 d6 d7

d0 d1 d2 d3 d4 d5 d6

Timing Diagram for One-Dimensional Pipeline

• Horizontal axis shows progress of time from left to right, and vertical axis shows which
data item is being processed by which pipeline stage at a given time.

23

p
pi

pe
lin

e
st

ag
es

 (t
as

ks
)

n data items

Point-to-point
synchronization
across stages

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Worksheet: Analyzing Parallelism in an Actor Pipeline
Consider a three-stage pipeline of actors, set up so that P0.nextStage = P1, P1.nextStage = P2, and P2.nextStage = null.
The process() method for each actor is shown below.

Assume that 100 non-null messages are sent to actor P0 after all three actors are started, followed by a null message.
What will the total WORK and CPL be for this execution? Recall that each actor has a sequential thread.

1. protected void process(final Object msg) {
2. if (msg == null) {
3. exit();
4. } else {
5. doWork(1); // unit work
6. }
7. if (nextStage != null) {
8. nextStage.send(msg);
9. }
10. }

 

24

95
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen ! Prentice Hall, 1998

P0

P4

P3

P5

P2

P1

Time

Figure 5.6 Pipeline processing 10 data elements.

d9d8d7d6d5d4d3d2d1d0 P0 P1 P2 P3 P4 P5

(a) Pipeline structure

(b) Timing diagram

P8

P7

P9

P6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

P7P6 P8 P9

Input sequence

p " 1 n

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9

d0 d1 d2 d3 d4 d5 d6 d7 d8

d0 d1 d2 d3 d4 d5 d6 d7

d0 d1 d2 d3 d4 d5 d6

...

WORK = 300, CPL = 102

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

State Diagram for Extended Actors with Pause-Resume

" Paused state: actor will not process subsequent
messages until it is resumed

" Resume actor when it is safe to process the next
message

" Messages can accumulate in mailbox when actor is in
PAUSED state

NOTE: Calls to exit(), pause(), resume() only impact the
processing of the next message, and not the
processing of the current message. These calls should
just be viewed as “state change” operations.

25

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Synchronized Reply using Pause/Resume
Actors don’t normally require synchronization with other actors. However, sometimes we might want actors
to be in synch with one another.

26

1.class SynchSenderActor
2. extends Actor<Message> {
3. private Actor otherActor = …
4. void process(Msg msg) {
5. ...
6. DDF<T> ddf = newDDF();
7. otherActor.send(ddf);
8. pause(); // non-blocking
9. asyncAwait(ddf, () -> {
10. T synchronousReply = ddf.safeGet();
11. println("Response received");
12. resume(); // non-blocking
13. });
14. ...
15.} }

1.class SynchReplyActor
2. extends Actor<DDF> {
3. void process(DDF msg) {
4. ...
5. println("Message received");
6. // process message
7. T responseResult = ...;
8. msg.put(responseResult);
9. ...
10.} }

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Co-locating async tasks in “places”
(Lecture 30)

// Main program starts at place 0
asyncAt(place(0), () -> S1);
asyncAt(place(0), () -> S2);

asyncAt(place(1), () -> S3);
asyncAt(place(1), () -> S4);
asyncAt(place(1), () -> S5);

27

asyncAt(place(2), () -> S6);
asyncAt(place(2), () -> S7);
asyncAt(place(2), () -> S8);

asyncAt(place(3), () -> S9);
asyncAt(place(3), () -> S10);

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Worksheet: impact of distribution on parallel completion time

1. public void sampleKernel(
2. int iterations, int numChunks, Distribution dist) {
3. for (int iter = 0; iter < iterations; iter++) {
4. finish(() -> {
5. forseq (0, numChunks - 1, (jj) -> {
6. asyncAt(dist.get(jj), () -> {
7. doWork(jj);
8. // Assume that time to process chunk jj = jj units
9. });
10. });
11. });
12. } // for iter
13. } // sample kernel

• Assume an execution with n places, each place with one worker thread
• Will a block or cyclic distribution for dist have a smaller abstract completion time, assuming that all tasks on the
same place are serialized with one worker per place?
•Answer: Cyclic distribution because it leads to better load balance (locality was not a consideration in this problem)

28

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

One-Dimensional Iterative Averaging Example
• Initialize a one-dimensional array of (n+2) double’s with boundary conditions, myVal[0]

= 0 and myVal[n+1] = 1.
• In each iteration, each interior element myVal[i] in 1..n is replaced by the average of its

left and right neighbors.
—Two separate arrays are used in each iteration, one for old values and the other for
the new values

• After a sufficient number of iterations, we expect each element of the array to
converge to myVal[i] = (myVal[i-1]+myVal[i+1])/2, for all i in 1..n

llustration of an intermediate step for n = 8 (source: Figure 6.19 in Lin-Snyder book)

29

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

HJ code for One-Dimensional Iterative Averaging
1.// Intialize m, n, myVal, newVal
2.m = … ; n = … ;
3.float[] myVal = new float[n+2];
4.float[] myNew = new float[n+2];
5.forseq(0, m-1, (iter) -> {
6. // Compute MyNew as function of input array MyVal
7. forall(1, n, (j) -> { // Create n tasks
8. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
9. }); // forall
10. // What is the purpose of line 11 below?
11. float[] temp=myVal; myVal=myNew; myNew=temp;
12.}); // forseq

30

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

HJ code for One-Dimensional Iterative Averaging
1.// Intialize m, n, myVal, newVal
2.m = … ; n = … ; nc = … ;
3.float[] myVal = new float[n+2];
4.float[] myNew = new float[n+2];
5.forseq(0, m-1, (iter) -> {
6. // Compute MyNew as function of input array MyVal
7. forallChunked(1, n, n/nc, (j) -> { // Create nc tasks
8. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
9. }); // forall
10. // What is the purpose of line 11 below?
11. float[] temp=myVal; myVal=myNew; myNew=temp;
12.}); // forseq

31

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

1) Assuming n=9 and the input array below, perform a “half-iteration” of the iterative averaging
example by only filling in the blanks for odd values of j in the myNew[] array (different from the real
algorithm). Recall that the computation is “myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;”

2) Will the contents of myVal[] and myNew[] change in further iterations?
No, this represents the converged value (equilibrium/fixpoint).
3) Write the formula for the final value of myNew[i] as a function of i and n. In general, this is the value
that we will get if m (= #iterations in sequential for-iter loop) is large enough.
After a sufficiently large number of iterations, the iterated averaging code will converge with myNew[i]
= myVal[i] = i / (n+1)

Worksheet: One-dimensional Iterative Averaging Example

32

index, j 0 1 2 3 4 5 6 7 8 9 10

myVal 0 0 0.2 0 0.4 0 0.6 0 0.8 0 1

myNew 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Barriers

• Question: how can we transform this code so as to ensure that all tasks say hello before any tasks say
goodbye, without having to change the local variable?

• Approach 2: insert a “barrier” (“next” statement) between the hello’s and goodbye’s
1. // APPROACH 2

2. forallPhased (0, m - 1, (i) -> {

3. int sq = i*i;

4. System.out.println(“Hello from task with square = “ + sq);

5. next(); // Barrier

6. System.out.println(“Goodbye from task with square = “ + sq);

7. });

• next -> each forallPhased iteration waits at barrier until all iterations arrive (previous
phase is completed), after which the next phase can start

—Scope of next is the closest enclosing forallPhased statement
—If a forallPhased iteration terminates before executing “next”, then the other iterations don’t wait for it

33

Phase 0

Phase 1

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Worksheet: Forall Loops and Barriers
Draw a “barrier matching” figure similar to lecture 12 slide 11 for the code fragment below.

1. String[] a = { “ab”, “cde”, “f” };
2. . . . int m = a.length; . . .
3. forallPhased (0, m-1, (i) -> {
4. for (int j = 0; j < a[i].length(); j++) {
5. // forall iteration i is executing phase j
6. System.out.println("(" + i + "," + j + ")");
7. next();
8. }
9. });

34

Solution

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Summary of Phaser Construct (Lecture 33)
• Phaser allocation

— HjPhaser ph = newPhaser(mode);
– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— HjPhaserMode.SIG, HjPhaserMode.WAIT,  

HjPhaserMode.SIG_WAIT, HjPhaserMode.SIG_WAIT_SINGLE
– NOTE: phaser WAIT is unrelated to Java wait/notify (which we will study later)

• Phaser registration
— asyncPhased (ph1.inMode(<mode1>), ph2.inMode(<mode2>), … () -> <stmt>)

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …
– Child task’s capabilities must be subset of parent’s
– asyncPhased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
— next();

– Advance each phaser that current task is registered on to its next phase
– Semantics depends on registration mode
– Barrier is a special case of phaser, which is why next is used for both

35

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Worksheet: Reordered Asyncs with One Phaser

1. finish (() -> {
2. ph = newPhaser(SIG_WAIT); // mode is SIG_WAIT
3. asyncPhased(ph.inMode(SIG), () -> {
4. // A1 (SIG mode)
5. doA1Phase1(); next(); doA1Phase2(); });
6. asyncPhased(ph.inMode(HjPhaserMode.WAIT), () -> {
7. // A4 (WAIT mode)
8. doA4Phase1(); next(); doA4Phase2(); });
9. asyncPhased(ph.inMode(SIG_WAIT), () -> {
10. // A2 (SIG_WAIT mode)
11. doA2Phase1(); next(); doA2Phase2(); });
12. asyncPhased(ph.inMode(HjPhaserMode.SIG_WAIT), () -> {
13. // A3 (SIG_WAIT mode)
14. doA3Phase1(); next(); doA3Phase2(); });
15. });

36

Task A4 has been moved up to line 6. Does this change the computation graph in slide 9? If so, draw the new computation graph. If
not, explain why the computation graph is the same.

No, A4 still needs to wait on A2 and A3 to signal before it can start doA4Phase2().

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Signal statement & Fuzzy barriers
• When a task T performs a signal operation, it notifies all the phasers it is registered on that it has

completed all the work expected by other tasks (“shared” work) in the current phase.
• Later, when T performs a next operation, the next degenerates to a wait since a signal has already

been performed in the current phase.
• The execution of “local work” between signal and next is overlapped with the phase transition

(referred to as a “split-phase barrier” or “fuzzy barrier”)

1. forallPhased(point[i] : [0:1]) {
2. A(i); // Phase 0
3. if (i==0) { signal; B(i); }
4. next; // Barrier
5. C(i); // Phase 1
6. if (i==1) { D(i); }
7. }

37

A(0)

B(0)

C(0)

A(1)

D(1)

C(1)

barrier

signal
(i=0)

next
(i=1)

next
(i=1)

next
(i=0)

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Compute the WORK and CPL values for the program shown below. How would they be different if the signal() statement was removed?
(Hint: draw a computation graph as in slide 11)
WORK = 204, CPL = 102. If the signal() is removed, CPL = 202.

Worksheet: Critical Path Length for Computation with Signal Statement

1.finish(() -> {
2. final HjPhaser ph = newPhaser(SIG_WAIT);
3. asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T1
4. A(0); doWork(1); // Shared work in phase 0
5. signal();
6. B(0); doWork(100); // Local work in phase 0
7. next(); // Wait for T2 to complete shared work in phase 0
8. C(0); doWork(1);
9. });
10. asyncPhased(ph.inMode(SIG_WAIT), () -> { // Task T2
11. A(1); doWork(1); // Shared work in phase 0
12. next(); // Wait for T1 to complete shared work in phase 0
13. C(1); doWork(1);
14. D(1); doWork(100); // Local work in phase 0
15. });
16.}); // finish

38

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)39

What is “Eureka Style” Computation? (Lecture 35)

• Many optimization and search problems
attempts to find a result with a certain
property or cost

• Announce when a result has been found
• An "aha!" moment – Eureka event
• Can make rest of the computation
unnecessary

==> Opportunities for “speculative
parallelism”, e.g., Parallel Search, Branch
and Bound Optimization, Soft Real-Time
Deadlines, Convergence Iterations, . . .

Image source: http://www.netstate.com/
states/mottoes/images/ca_eureka.jpg

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Tree Min Index Search Example
HjExtremaEureka<Integer> eureka = newExtremaEureka( 
 Integer.MAX_VALUE, (Integer i, Integer j) -> j.compareTo(i)); 
finish(eureka, () -> { 
 async(() -> { 
 minIndexSearchBody(eureka, rootNode, elemToSearch); 
 }); 
}); 

private static void minIndexSearchBody( 
 HjExtremaEureka<Integer> eureka, Node rootNode,  
 int elemToSearch) throws SuspendableException { 
 eureka.check(rootNode.id); 
 if (rootNode.value == elemToSearch) { 
 eureka.offer(rootNode.id); 
 } 
 if (rootNode.left != null) { 
 async(() -> { 
 minIndexSearchBody(eureka, rootNode.left, elemToSearch); 
 }); 
 } 
 if (rootNode.right != null) { 
 async(() -> { 
 minIndexSearchBody(eureka, rootNode.right, elemToSearch); 
 }); 
 } 
}

40

Inputs:
• binary tree, T
• id for each node in T, in

breadth-first order e.g.,
root.id = 0, root.left.id = 1,
root.right.id = 2, …

• value for each node in T
that is the search target

Outputs:
• calls to offer() update

eureka with minimum id
found so far (among those
that match)

• calls to check() can lead to
early termination if the
argument is >= than
current minimum in eureka

• final value of eureka
contains minimum id of
node with value ==
elemToSearch

COMP 322, Spring 2022 (M. Joyner, Z. Budimlić)

Worksheet: Finding maximal index of goal in matrix

Below is a code fragment intended to find the maximal (largest) index of a goal value that occurs multiple times in the
input matrix. Could we make the code more efficient? If so, explain why?

41

1. class AsyncFinishEurekaSearchMaxIndexOfGoal {
2. HjEureka eurekaFactory() {
3. comparator = (cur, newVal) -> { // cur is initially [-1, -1] 

 (cur.x==newVal.x) ? (newVal.y - cur.y) : (newVal.x - cur.x) }
4. return new MaximaEureka([-1, -1], comparator)
5. }
6. int[] doWork(matrix, goal) {
7. val eu = eurekaFactory()
8. finish (eu, () -> { // eureka registration
9. forasync (0, matrix.length - 1, (r) ->
10. procRow(matrix(r), r, goal));
11. });
12. return eu.get()
13. }
14. void procRow(array, r, goal) {
15. for (int c = 0; c < array.length(); c++)
16. check([r, c]) // terminate if comparator returns negative
17. if goal.match(array(c)) offer([r, c]) // updates cur in eureka
18. } }

This code is inefficient due to starting c at 0
instead of array.length() -1. We could also use
forasyncChunked to reduce the number of
tasks created.

