
COMP 322: Fundamentals of
Parallel Programming

Lecture 19: Java Atomic Variables
— a special case of isolated

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 19 7 March 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  Lecture 19 handout

COMP 322, Spring 2011 (V.Sarkar)	

3

HJ isolated statement (Recap) "
isolated <body>
•  Two tasks executing isolated statements with interfering

accesses must perform the isolated statement in mutual
exclusion
— Two instances of isolated statements, ⟨stmt1⟩ and ⟨stmt2⟩, are said

to interfere with each other if both access a shared location, such
that at least one of the accesses is a write.

 Weak isolation guarantee: no mutual exclusion applies to non-
isolated statements i.e., to (isolated, non-isolated) and (non-
isolated, non-isolated) pairs of statement instances

•  Isolated statements may be nested (redundant)
•  Isolated statements must not contain any other parallel

statement: async, finish, get, forall
•  In case of exception, all updates performed by <body> before

throwing the exception will be observable after exiting <body>

COMP 322, Spring 2011 (V.Sarkar)	

4

DoublyLinkedListNode example (Recap)"
1.  class DoublyLinkedListNode {
2.  DoublyLinkedListNode prev, next;
3.  . . .
4.  void delete() {
5.  isolated { // start of mutual exclusion region (critical section)
6.  if (this.prev != null) this.prev.next = this.next;
7.  if (this.next != null) this.next.prev = this.prev
8.  } // end of mutual exclusion region (critical section)
9.  . . .
10.  }
11.  . . .
12. }
13. . . .
14. static void deleteTwoNodes(DoublyLinkedListNode n1, n2) {
15.  finish {
16.  async n1.delete();
17.  async n2.delete();
18.  }
19. }

COMP 322, Spring 2011 (V.Sarkar)	

5

Implementations of isolated statement"
•  isolated statements are convenient for the programmer but pose

significant challenges for the language implementation
— Implementation does not know ahead of time if two dynamic

instances of isolated statements will interfere or not

•  HJ implementation used in COMP 322 takes a simple single-lock
approach to implementing isolated statements
— Entry to isolated statement is treated as an acquire() operation on

the lock
— Exit from isolated statement is treated as a release() operation on

the lock
— Though correct, this approach essentially implements isolated

statements as critical sections, thereby serializing all interfering
and non-interfering isolated statement instances.

•  How can we do better?

COMP 322, Spring 2011 (V.Sarkar)	

6

•  Execution of an isolated statement is treated as a transaction
— In database systems, a transaction refers to a “unit of work” that

has “all-or-nothing” semantics. Each unit of work must either
complete in its entirety or have no visible effect.

•  A TM system logs all read and write operations performed in a
transaction and optimistically permits transactions to run in
parallel, speculating that there won’t be interference

•  At the end of a transaction, a TM system checks if
interference occurred with another transaction
— If not, the transaction can be committed
— If so, the transaction fails and has to be “retried”

•  Both software and hardware implementations of TM have been
explored extensively by the research community, but no
implementation is suitable for mainstream use as yet

Transactional Memory (TM)"

COMP 322, Spring 2011 (V.Sarkar)	

7

Three cases of contention among
isolated statements"

1.  Low contention: when isolated statements are executed
infrequently

—  A single-lock approach as in HJ is often the best solution. No
visible benefit from other techniques because they incur overhead
that is not needed since contention is low.

2. Moderate contention: when the serialization of all isolated
statements in a single-lock approach limits the performance of
the parallel program due to Amdahl’s Law, but a finer-grained
approach that only serializes interfering isolated statements
results in good scalability

—  Atomic variables usually do well in this scenario since the benefit
obtained from reduced serialization far outweighs any extra
overhead incurred.

3.  High contention: when interfering isolated statements dominate
the program execution time in certain phases

—  Best approach in such cases is to find an alternative algorithm to
using isolated

COMP 322, Spring 2011 (V.Sarkar)	

8

java.util.concurrent"
Sub-packages include
•  Atomic variables

— Efficient implementations of special-case patterns of isolated
statements

•  Concurrent Collections:
— Queues, blocking queues, concurrent hash map, …
— Data structures designed for concurrent environments

•  Executors, Thread pools and Futures
— Execution frameworks for asynchronous tasking

•  Locks and Conditions
— More flexible synchronization control
— Read/write locks

•  Synchronizers: Semaphore, Latch, Barrier, Exchanger, Phaser
— Tools for thread coordination

COMP 322, Spring 2011 (V.Sarkar)	

9

Table 1: Methods in java.util.concurrent atomic
classes AtomicInteger and AtomicIntegerArray"

COMP 322, Spring 2011 (V.Sarkar)	

10

Table 2: Examples of common isolated statement idioms
and their equivalent AtomicInteger implementations"

COMP 322, Spring 2011 (V.Sarkar)	

11

Table 3: Methods in java.util.concurrent atomic
classes AtomicReference and AtomicReferenceArray"

COMP 322, Spring 2011 (V.Sarkar)	

12

Parallel Depth-First Search Spanning Tree  
Example revisited"

DFS

compute

compute

compute
compute

1.   class V {!
2.   V [] neighbors; // adjacency list for input

graph!
3.   V parent; // output value of parent in

spanning tree!
4.   boolean tryLabeling(V n) {!
5.   isolated if (parent == null) parent=n;!
6.   return parent == n;!
7.   } // tryLabeling!
8.   void compute() {!
9.   for (int i=0; i<neighbors.length; i++) { !
10.   V child = neighbors[i]; !
11.   if (child.tryLabeling(this))!
12.   async child.compute(); //escaping async!
13.   } !
14.   } // compute!
15.  } // class V!
16.  . . .!
17.  root.parent = root; // Use self-cycle to identify

root!
18.  finish root.compute();!
19.  . . .!

Spawn edge"

Join edge"

COMP 322, Spring 2011 (V.Sarkar)	

13

Parallel Depth-First Search Spanning Tree  
Example revisited"

1.   class V {!
2.   V [] neighbors; // adjacency list for input graph!
3.   AtomicReference parent; // output value of parent in

spanning tree!
4.   boolean tryLabeling(V n) {!
5.   return parent.compareAndSet(null ,n);!
6.   !
7.   } // tryLabeling!
8.   void compute() {!
9.   for (int i=0; i<neighbors.length; i++) { !
10.   V child = neighbors[i]; !
11.   if (child.tryLabeling(this))!
12.   async child.compute(); //escaping async!
13.   } !
14.   } // compute!
15.  } // class V!
16.  . . .!
17.  root.parent = root; // Use self-cycle to identify root!
18.  finish root.compute();!
19.  . . .!

