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Acknowledgments for Todayʼs Lecture"
•  Lecture 19 handout 



COMP 322, Spring 2011 (V.Sarkar)	

3 

HJ isolated statement (Recap) "
isolated <body> 
•  Two tasks executing isolated statements with interfering 

accesses must perform the isolated statement in mutual 
exclusion 
— Two instances of isolated statements, ⟨stmt1⟩ and ⟨stmt2⟩, are said 

to interfere with each other if both access a shared location, such 
that at least one of the accesses is a write. 

 Weak isolation guarantee: no mutual exclusion applies to non-
isolated statements i.e., to (isolated, non-isolated) and (non-
isolated, non-isolated) pairs of statement instances 

•  Isolated statements may be nested (redundant) 
•  Isolated statements must not contain any other parallel 

statement: async, finish, get, forall 
•  In case of exception, all updates performed by <body> before 

throwing the exception will be observable after exiting <body> 
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DoublyLinkedListNode example (Recap)"
1.  class DoublyLinkedListNode { 
2.    DoublyLinkedListNode prev, next; 
3.    . . . 
4.    void delete() { 
5.      isolated { // start of mutual exclusion region (critical section) 
6.        if (this.prev != null) this.prev.next = this.next; 
7.        if (this.next != null) this.next.prev = this.prev 
8.      } // end of mutual exclusion region (critical section) 
9.      . . . 
10.   } 
11.   . . . 
12. } 
13. . . . 
14. static void deleteTwoNodes(DoublyLinkedListNode n1, n2) { 
15.   finish { 
16.     async n1.delete(); 
17.     async n2.delete(); 
18.   } 
19. } 
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Implementations of isolated statement"
•  isolated statements are convenient for the programmer but pose 

significant challenges for the language implementation 
— Implementation does not know ahead of time if two dynamic 

instances of isolated statements will interfere or not 

•  HJ implementation used in COMP 322 takes a simple single-lock 
approach to implementing isolated statements 
— Entry to isolated statement is treated as an acquire() operation on 

the lock 
— Exit from isolated statement is treated as a release() operation on 

the lock 
— Though correct, this approach essentially implements isolated 

statements as critical sections, thereby serializing all interfering 
and non-interfering isolated statement instances. 

•  How can we do better? 
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•  Execution of an isolated statement is treated as a transaction 
— In database systems, a transaction refers to a “unit of work” that 

has “all-or-nothing” semantics.  Each unit of work must either 
complete in its entirety or have no visible effect.  

•  A TM system logs all read and write operations performed in a 
transaction and optimistically permits transactions to run in 
parallel, speculating that there won’t be interference 

•  At the end of a transaction, a TM system checks if 
interference occurred with another transaction 
— If not, the transaction can be committed 
— If so, the transaction fails and has to be “retried” 

•  Both software and hardware implementations of TM have been 
explored extensively by the research community, but no 
implementation is suitable for mainstream use as yet 

Transactional Memory (TM)"
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Three cases of contention among 
isolated statements"

1.  Low contention: when isolated statements are executed 
infrequently 

—  A single-lock approach as in HJ is often the best solution. No 
visible benefit from other techniques because they incur overhead 
that is not needed since contention is low. 

2. Moderate contention: when the serialization of all isolated 
statements in a single-lock approach limits the performance of 
the parallel program due to Amdahl’s Law, but a finer-grained 
approach that only serializes interfering isolated statements 
results in good scalability 

—  Atomic variables usually do well  in this scenario since the benefit 
obtained from reduced serialization far outweighs any extra 
overhead incurred. 

3.  High contention: when interfering isolated statements dominate 
the program execution time in certain phases 

—  Best approach in such cases is to find an alternative algorithm to 
using isolated 
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java.util.concurrent"
Sub-packages include 
•  Atomic variables 

— Efficient implementations of special-case patterns of isolated 
statements 

•  Concurrent Collections:  
— Queues, blocking queues, concurrent hash map, … 
— Data structures designed for concurrent environments 

•  Executors, Thread pools and Futures 
— Execution frameworks for asynchronous tasking 

•  Locks and Conditions 
— More flexible synchronization control 
— Read/write locks 

•  Synchronizers: Semaphore, Latch, Barrier, Exchanger, Phaser 
— Tools for thread coordination 
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Table 1: Methods in java.util.concurrent atomic 
classes AtomicInteger and AtomicIntegerArray"
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Table 2: Examples of common isolated statement idioms 
and their equivalent AtomicInteger implementations"
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Table 3: Methods in java.util.concurrent atomic 
classes AtomicReference and AtomicReferenceArray"
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Parallel Depth-First Search Spanning Tree  
Example revisited"

DFS 

compute 

compute 

compute 
compute 

1.   class V  {!
2.     V [] neighbors; // adjacency list for input 

graph!
3.     V parent;       // output value of parent in 

spanning tree!
4.     boolean tryLabeling(V n) {!
5.       isolated if (parent == null) parent=n;!
6.       return parent == n;!
7.     } // tryLabeling!
8.     void compute() {!
9.       for (int i=0; i<neighbors.length; i++) { !
10.        V child = neighbors[i];  !
11.        if (child.tryLabeling(this))!
12.            async child.compute(); //escaping async!
13.       } !
14.    } // compute!
15.  } // class V!
16.  . . .!
17.  root.parent = root; // Use self-cycle to identify 

root!
18.  finish root.compute();!
19.  . . .!

Spawn edge"

Join edge"
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Parallel Depth-First Search Spanning Tree  
Example revisited"

1.   class V  {!
2.     V [] neighbors; // adjacency list for input graph!
3.     AtomicReference parent;       // output value of parent in 

spanning tree!
4.     boolean tryLabeling(V n) {!
5.       return parent.compareAndSet(null ,n);!
6.       !
7.     } // tryLabeling!
8.     void compute() {!
9.       for (int i=0; i<neighbors.length; i++) { !
10.        V child = neighbors[i];  !
11.        if (child.tryLabeling(this))!
12.            async child.compute(); //escaping async!
13.       } !
14.    } // compute!
15.  } // class V!
16.  . . .!
17.  root.parent = root; // Use self-cycle to identify root!
18.  finish root.compute();!
19.  . . .!


