
COMP 322: Fundamentals of
Parallel Programming

!
Lecture 33: Introduction to the Message

Passing Interface (MPI)

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

!
Contact email: vsarkar@rice.edu

!
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 33 10 April 2015

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Announcements
• Homework 4

—Deadline extended to 11:59pm on Sunday, April 12th
—You are allowed to modify any class that you choose, but you must clearly state

in the report which classes you modified.
— There will be no deductions for poor performance or poor actual speedup in this

homework. You still need to run your solution on STIC and include the results in
your report. If you have a submission that demonstrates parallel speedup on
STIC, that's great. If not, the staff will evaluate the algorithmic approach in the
parallel version of your code, instead of evaluating the actual parallel speedup.

• Homework 5
—Will be assigned on April 13th and due on April 24th (with an automatic 1-week

extension to May 1st)
—Main homework will consist of written questions only
—There will be an optional programming assignment for which you can get extra

credit

2

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksheet #32 solution: Spark and Map-Reduce

3

val points = spark.textFile(…).map(parsePoint).cache()
!
var w = Vector.random(D) // current separating plane
!
for (i <- 1 to ITERATIONS) {
 val gradient = points.map(doWork(1)).reduce(_ + _)
!
 w -= gradient
}
!
println("Final separating plane: " + w)

There are ITERATIONS sequential iterations, each mapping doWork
in parallel over every value in points, which is immediately forced by
a reduce. So,
work = ITERATIONS * |points|
CPL = ITERATIONS.
!
!

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Acknowledgments for Today’s Lecture
• “Principles of Parallel Programming”, Calvin Lin & Lawrence Snyder

— Includes resources available at http://www.pearsonhighered.com/educator/academic/product/
0,3110,0321487907,00.html

• “Parallel Architectures”, Calvin Lin
— Lectures 5 & 6, CS380P, Spring 2009, UT Austin
— http://www.cs.utexas.edu/users/lin/cs380p/schedule.html

• Slides accompanying Chapter 6 of “Introduction to Parallel Computing”, 2nd Edition,
Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, Addison-Wesley, 2003
— http://www-users.cs.umn.edu/~karypis/parbook/Lectures/AG/chap6_slides.pdf

• MPI slides from “High Performance Computing: Models, Methods and Means”, Thomas
Sterling, CSC 7600, Spring 2009, LSU
— http://www.cct.lsu.edu/csc7600/coursemat/index.html

• mpiJava home page: http://www.hpjava.org/mpiJava.html
• MPI lectures given at Rice HPC Summer Institute 2009, Tim Warburton, May 2009

4

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Organization of a Distributed-Memory
Multiprocessor

Figure (a)
• Host node (Pc) connected to a cluster of processor nodes (P0 … Pm)
• Processors P0 … Pm communicate via an interconnection network which could be

standard TCP/IP (e.g., for Map-Reduce) or specialized for high performance
communication (e.g., for scientific computing)

Figure (b)
• Each processor node consists of a processor, memory, and a Network Interface Card

(NIC) connected to a router node (R) in the interconnect

5

Processors communicate by sending messages via an interconnect

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

MapReduce Execution: One Approach to
Programming Distributed-Memory Multiprocessors

6

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Another approach: 
Message-Passing (extension of Actor model)

• The logical view of a machine supporting the message-passing paradigm
consists of p processes, each with its own exclusive address space, that
are capable of executing on different nodes in a distributed-memory
multiprocessor
1. Each data element must belong to one of the partitions of the space;

hence, data must be explicitly partitioned and placed.
2. All interactions (read-only or read/write) require cooperation of two

processes - the process that has the data and the process that wants
to access the data.

• These two constraints, while onerous, make underlying costs very
explicit to the programmer.

• In this loosely synchronous (“bulk synchronous”) model, processes
synchronize infrequently to perform interactions. Between these
interactions, they execute completely asynchronously.

7

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Data Distribution: Local View in
Distributed-Memory Systems

8

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

MPI: The Message Passing Interface
• Sockets and Remote Method Invocation (RMI) are communication primitives used

for distributed Java programs.
—Designed for standard TCP/IP networks rather than high-performance

interconnects
• The Message Passing Interface (MPI) standard was designed to exploit high-

performance interconnects
—MPI was standardized in the early 1990s by the MPI Forum—a substantial

consortium of vendors and researchers
– http://www-unix.mcs.anl.gov/mpi

—It is an API for communication between nodes of a distributed memory parallel
computer

—The original standard defines bindings to C and Fortran (later C++)
– Java support is available from a research project, mpiJava, developed at

Indiana University 10+ years ago
http://www.hpjava.org/mpiJava.html

• Most MPI programs are written using the single program multiple data (SPMD) model

9

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

SPMD Pattern
• SPMD: Single Program Multiple Data

• Run the same program on P processing elements (PEs)

• Use the “rank” … an ID ranging from 0 to (P-1) … to determine
what computation is performed on what data by a given PE

• Different PEs can follow different paths through the same code

• Convenient pattern for hardware platforms that are not amenable
to efficient forms of dynamic task parallelism
— General-Purpose Graphics Processing Units (GPGPUs)
— Distributed-memory parallel machines

• Key design decisions --- how should data and computation be
distributed across PEs?

10

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Using the Single Program Multiple Data
(SPMD) model with a Local View

Processors must communicate via messages for non-local data
accesses

• Similar to communication constraint for actors (except that we allow
hybrid combinations of task parallelism and actor parallelism in HJ)

11

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Features of MPI
• MPI is a platform for Single Program Multiple Data (SPMD) parallel

computing on distributed memory architectures, with an API for
sending and receiving messages

• It includes the abstraction of a “communicator”, which is like an N-
way communication channel that connects a set of N cooperating
processes (analogous to a phaser)

• It also includes explicit datatypes in the API, that are used to
describe the contents of communication buffers.

12

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

The Minimal Set of MPI Routines
(mpiJava)

• MPI.Init(args)
—initialize MPI in each process

• MPI.Finalize()
—terminate MPI

• MPI.COMM_WORLD.Size()
—number of processes in COMM_WORLD communicator

• MPI.COMM_WORLD.Rank()
—rank of this process in COMM_WORLD communicator

• Note:
—In this subset, processes act independently with no information communicated among

the processes.
—COMM_WORLD is the default communicator that includes all N processes, and

numbers them with ranks from 0 to N-1

13

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Our First MPI Program  
(mpiJava version)

1.import mpi.*;
2.class Hello {
3. static public void main(String[] args) {
4. // Init() be called before other MPI calls
5. MPI.Init(args); /
6. int npes = MPI.COMM_WORLD.Size()
7. int myrank = MPI.COMM_WORLD.Rank() ;
8. System.out.println(”My process number is ” + myrank);
9. MPI.Finalize(); // Shutdown and clean-up
10. }
11.}

main() is enclosed in an
implicit “forall” --- each
process runs a separate
instance of main() with
“index variable” = myrank

14

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

MPI Communicators
• Communicator is an internal object

— Communicator registration is like phaser registration, except that MPI does not
support dynamic parallelism

• MPI programs are made up of communicating processes
• Each process has its own address space containing its own attributes such

as rank, size (and argc, argv, etc.)
• MPI provides functions to interact with it
• Default communicator is MPI.COMM_WORLD

— All processes are its members
— It has a size (the number of processes)
— Each process has a rank within it
— Can think of it as an ordered list of processes

• Additional communicator(s) can co-exist
• A process can belong to more than one communicator
• Within a communicator, each process has a unique rank

MPI.COMM_WORLD

0

12

5

3

4

6

7

15

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Adding Send() and Recv() to the
• MPI.Init(args)

—initialize MPI in each process
• MPI.Finalize()

—terminate MPI
• MPI.COMM_WORLD.Size()

—number of processes in COMM_WORLD communicator
• MPI.COMM_WORLD.Rank()

—rank of this process in COMM_WORLD communicator
• MPI.COMM_WORLD.Send()

—send message using COMM_WORLD communicator
• MPI.COMM_WORLD.Recv()

—receive message using COMM_WORLD communicator

Point-
to-
point
commn

16

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

MPI Blocking Point to Point
Communication: Basic Idea

• A very simple communication between two processes is:
—process zero sends ten doubles to process one

• In MPI this is a little more complicated than you might expect.
• Process zero has to tell MPI:

—to send a message to process one
—that the message contains ten entries
—the entries of the message are of type double
—the message has to be tagged with a label (integer number)

• Process one has to tell MPI:
—to receive a message from process zero
—that the message contains ten entries
—the entries of the message are of type double
—the label that process zero attached to the message

17

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

mpiJava send and receive
• Send and receive members of Comm:
 void Send(Object buf, int offset, int count, Datatype type, int dst, int tag) ;
!
 Status Recv(Object buf, int offset, int count, Datatype type, int src, int tag) ;
!• The arguments buf, offset, count, type describe the data buffer—the

storage of the data that is sent or received. They will be discussed on the
next slide.

• dst is the rank of the destination process relative to this communicator.
Similarly in Recv(), src is the rank of the source process.

• An arbitrarily chosen tag value can be used in Recv() to select between
several incoming messages: the call will wait until a message sent with a
matching tag value arrives.

• The Recv() method returns a Status value, discussed later.
• Both Send() and Recv() are blocking operations by default

— Analogous to a phaser next operation

18

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example of Send and Recv
1.import mpi.*;!
2. class myProg {!
3. public static void main(String[] args) {!
4. int tag0 = 0; int tag1 = 1;!
5. MPI.Init(args);! ! // Start MPI computation!
6. if (MPI.COMM_WORLD.rank() == 0) { // rank 0 = sender!
7. int loop[] = new int[1]; loop[0] = 3;!
8. MPI.COMM_WORLD.Send("Hello World!", 0, 12, MPI.CHAR, 1, tag0);!
9. MPI.COMM_WORLD.Send(loop, 0, 1, MPI.INT, 1, tag1);!
10. } else { // rank 1 = receiver!
11. int loop[] = new int[1]; char msg[] = new char[12];!
12. MPI.COMM_WORLD.Recv(msg, 0, 12, MPI.CHAR, 0, tag0);!
13. MPI.COMM_WORLD.Recv(loop, 0, 1, MPI.INT, 0, tag1);!
14. for (int i = 0; i < loop[0]; i++) System.out.println(msg);!
15. }!
16. MPI.Finalize();! ! // Finish MPI computation!
17. }!
18.}!
!
Send() and Recv() calls are blocking operations by default

19

