
COMP 322: Fundamentals of Parallel Programming

Lecture 30: Safety and Liveness Properties, Java Synchronizers,
Dining Philosophers Problem

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 30 April 2020

http://comp322.rice.edu

COMP 322, Spring 2020 (M.Joyner)

Outline

• Safety and Liveness

• Java Synchronizers: Semaphores

• Dining Philosophers Problem

2

COMP 322, Spring 2020 (M.Joyner)

Safety vs Liveness

• In a concurrent setting, we need to specify both the safety and the liveness properties of an object

• Need a way to define
—Safety: when an implementation is functionally correct (does not produce a wrong answer)
—Liveness: the conditions under which it guarantees progress (completes execution successfully)

• Examples of safety
• Data race freedom is a desirable safety property for parallel programs (Module 1)
• Linearizability is a desirable safety property for concurrent objects (Module 2)

3

COMP 322, Spring 2020 (M.Joyner)

Liveness

• Liveness = a program’s ability to make progress in a timely manner

• Termination (“no infinite loop”) is not necessarily a requirement for liveness
• some applications are designed to be non-terminating

• Different levels of liveness guarantees (from weaker to stronger) for tasks/threads in a concurrent
program
1.Deadlock freedom
2.Livelock freedom
3.Starvation freedom
4. Bounded wait

4

COMP 322, Spring 2020 (M.Joyner)

1. Deadlock-Free Parallel Program Executions

• A parallel program execution is deadlock-free if no task’s execution remains incomplete due to it being
blocked awaiting some condition

• Example of a program with a deadlocking execution

• In this case, Task1 and Task2 are in a deadlock cycle.
– Three constructs that can lead to deadlock in HJlib: async await, finish w/ actors, explicit phaser wait

(instead of next)
—There are many constructs that can lead to deadlock cycles in other programming models (e.g., thread

join, synchronized, locks in Java)

5

// Thread T1
public void leftHand() {
 synchronized(obj1) {
 synchronized(obj2) {
 // work with obj1 & obj2
 . . .
 }
 }
}

// Thread T2
public void leftHand() {
 synchronized(obj2) {
 synchronized(obj1) {
 // work with obj2 & obj1
 . . .
 }
 }
}

COMP 322, Spring 2020 (M.Joyner)

2. Lovelock-Free Parallel Program

• A parallel program execution exhibits livelock if two or more tasks repeat the same interactions without
making any progress (special case of nontermination)

• Livelock example:

// Task T1
incrToTwo(AtomicInteger ai) {
 // increment ai till it reaches 2
 while (ai.incrementAndGet() < 2);
}

• Many well-intended approaches to avoid deadlock result in livelock instead
• Any HJlib program that uses only Module 1 features, and is data-race-free, is guaranteed to be

livelock-free (may be nonterminating in a single task, however)

6

// Task T2
decrToNegTwo(AtomicInteger ai) {
 // decrement ai till it reaches -2
 while (a.decrementAndGet() > -2);
}

COMP 322, Spring 2020 (M.Joyner)

3. Starvation-Free Parallel Program Executions

• A parallel program execution exhibits starvation if some task is repeatedly denied the opportunity to
make progress
—Starvation-freedom is sometimes referred to as “lock-out freedom”
—Starvation is possible in HJ programs, since all tasks in the same program are assumed to be

cooperating, rather than competing
– If starvation occurs in a deadlock-free HJ program, the “equivalent” sequential program must be

non-terminating (infinite loop)

• Classic source of starvation for OS threads: “Priority Inversion”
—Thread A is at high priority, waiting for result or resource from Thread C at low priority
—Thread B at intermediate priority is CPU-bound
—Thread C never runs (because its priority is lower than B’s priority), hence thread A never runs
—Fix: when a high priority thread waits for a low priority thread, boost the priority of the low-priority

thread

7

COMP 322, Spring 2020 (M.Joyner)

4. Bounded Wait

• A parallel program execution exhibits bounded wait if each task requesting a resource should only
have to wait for a bounded number of other tasks to “cut in line” i.e., to gain access to the resource
after its request has been registered.

• If bound = 0, then the program execution is fair

8

COMP 322, Spring 2020 (M.Joyner)

Outline

• Safety and Liveness

• Java Synchronizers: Semaphores

• Dining Philosophers Problem

9

COMP 322, Spring 2020 (M.Joyner)

Key Functional Groups in java.util.concurrent (j.u.c.)

• Atomic variables
—The key to writing lock-free algorithms

• Concurrent Collections:
—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Synchronizers: Semaphore, Latch, Barrier, Exchanger
—Ready made tools for thread coordination

10

COMP 322, Spring 2020 (M.Joyner)

Semaphores

• Conceptually serve as “permit” holders
—Construct with an initial number of permits
—acquire(): waits for permit to be available, then “takes” one, i.e., decrements the count of

available permits
—release(): “returns” a permit, i.e., increments the count of available permits
—But no actual permits change hands

—The semaphore just maintains the current count
—Thread performing release() can be different from the thread performing acquire()

• “fair” variant hands out permits in FIFO order
• Useful for managing bounded access to a shared resource

11

COMP 322, Spring 2020 (M.Joyner)

Bounded Blocking Concurrent List using Semaphores
1.public class BoundedBlockingList {
2. final int capacity;
3. final ConcurrentLinkedList list = new ConcurrentLinkedList();
4. final Semaphore sem;
5. public BoundedBlockingList(int capacity) {
6. this.capacity = capacity;
7. sem = new Semaphore(capacity);
8. }
9. public void addFirst(Object x) throws InterruptedException {
10. sem.acquire(); // blocks until a permit is available
11. try { list.addFirst(x); }
12. catch (Throwable t){ sem.release(); rethrow(t); } // only performed on exception
13. }
14. public boolean remove(Object x) {
15. if (list.remove(x)) { sem.release(); return true; }
16. return false;
17. }
18. … } // BoundedBlockingList  

12

COMP 322, Spring 2020 (M.Joyner)

Outline

• Safety and Liveness

• Java Synchronizers: Semaphores

• Dining Philosophers Problem
—Acknowledgments

– CMSC 330 course notes, U. Maryland
 http://www.cs.umd.edu/~lam/cmsc330/summer2008/lectures/class20-threads_classicprobs.ppt

– Dave Johnson (COMP 421 instructor)

13

COMP 322, Spring 2020 (M.Joyner)

The Dining Philosophers Problem

14

0

23

4

0

1
2

3

4

1

Constraints
• Five philosophers either eat or think
• They must have two forks to eat (chopsticks are a better motivation!)
• Can only use forks on either side of their plate
• No talking permitted
Goals
• Progress guarantees

• Deadlock freedom
• Livelock freedom
• Starvation freedom
• Maximum concurrency (no one should starve if there are available

forks for them)

COMP 322, Spring 2020 (M.Joyner)

General Structure of Dining Philosophers Problem: PseudoCode
1. int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5. while(true) {
6. Think ;
7. Acquire forks;
8. // Left fork = fork[p]
9. // Right fork = fork[(p-1)%numForks]
10. Eat ;
11. } // while
12.} // forall

15

COMP 322, Spring 2020 (M.Joyner)

Solution 1: using Java’s synchronized statement
1.int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5. while(true) {
6. Think ;
7. synchronized(fork[p])
8. synchronized(fork[(p-1)%numForks]) {
9. Eat ;
10. }
11. }
12. } // while
13.} // forall

16

COMP 322, Spring 2020 (M.Joyner)

Solution 2: using Java’s Lock library
1.int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5. while(true) {
6. Think ;
7. if (!fork[p].lock.tryLock()) continue;
8. if (!fork[(p-1)%numForks].lock.tryLock()) {
9. fork[p].lock.unLock(); continue;
10. }
11. Eat ;
12. fork[p].lock.unlock();fork[(p-1)%numForks].lock.unlock();
13. } // while
14.} // forall

17

COMP 322, Spring 2020 (M.Joyner)

Solution 3: using HJ’s isolated statement
1. int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5. while(true) {
6. Think ;
7. isolated {
8. Pick up left and right forks;
9. Eat ;
10. }
11. } // while
12.} // forall

18

COMP 322, Spring 2020 (M.Joyner)

Solution 4: using HJ’s object-based isolation
1. int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5. while(true) {
6. Think ;
7. isolated(fork[p], fork[(p-1)%numForks]) {
8. Eat ;
9. }
10. } // while
11.} // forall

19

COMP 322, Spring 2020 (M.Joyner)

Solution 5: using Java’s Semaphores
1. int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. Semaphore table = new Semaphore(3, true);
5. for (i=0;i<numForks;i++) fork[i].sem = new Semaphore(1, true);
6. forall(point [p] : [0:numPhilosophers-1]) {
7. while(true) {
8. Think ;
9. table.acquire(); // At most 3 philosophers at table, assume optimal table assignment
10. fork[p].sem.acquire(); // Acquire left fork
11. fork[(p-1)%numForks].sem.acquire(); // Acquire right fork
12. Eat ;
13. fork[p].sem.release(); fork[(p-1)%numForks].sem.release();
14. table.release();
15. } // while
16.} // forall

20

“true” parameter creates
a semaphore that
guarantees fairness

COMP 322, Spring 2020 (M.Joyner)

Characterizing Solutions to the Dining Philosophers Problem

For the five solutions studied in today’s lecture, indicate in the table below which of
the following conditions are possible and why:

1.Deadlock: when all philosopher tasks are blocked (neither thinking nor eating)

2.Livelock: when all philosopher tasks are executing but ALL philosophers are starved

3.Starvation: when one or more philosophers are starved (never get to eat)

4.Non-Concurrency: when more than one philosopher cannot eat at the same time,
even when resources are available

21

COMP 322, Spring 2020 (M.Joyner)

Worksheet: Characterizing Solutions to the Dining Philosophers
Problem

22

Deadlock Livelock Starvation Non-
concurrency

Solution 1:
synchronized

Solution 2:
tryLock/
unLock

Solution 3:
isolated

Solution 4:
object-based
isolation

Solution 5:
semaphores

