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Safety vs Liveness

• In a concurrent setting, we need to specify both the safety and the liveness properties of an object 

• Need a way to define  
—Safety: when an implementation is functionally correct (does not produce a wrong answer) 
—Liveness: the conditions under which it guarantees progress (completes execution successfully) 

• Examples of safety 
• Data race freedom is a desirable safety property for parallel programs (Module 1) 
• Linearizability is a desirable safety property for concurrent objects (Module 2)
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Liveness

• Liveness = a program’s ability to make progress in a timely manner  

• Termination (“no infinite loop”) is not necessarily a requirement for liveness 
• some applications are designed to be non-terminating 

• Different levels of liveness guarantees (from weaker to stronger) for tasks/threads in a concurrent 
program 
1.Deadlock freedom 
2.Livelock freedom 
3.Starvation freedom 
4. Bounded wait

4



COMP 322, Spring 2020 (M.Joyner)

1. Deadlock-Free Parallel Program Executions

• A parallel program execution is deadlock-free if no task’s execution remains incomplete due to it being 
blocked awaiting some condition 

• Example of a program with a deadlocking execution 
  

• In this case, Task1 and Task2 are in a deadlock cycle.   
– Three constructs that can lead to deadlock in HJlib: async await, finish w/ actors, explicit phaser wait 

(instead of next) 
—There are many constructs that can lead to deadlock cycles in other programming models (e.g., thread 

join, synchronized, locks in Java) 
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// Thread T1
public void leftHand() {
  synchronized(obj1) {
    synchronized(obj2) {
      // work with obj1 & obj2
      . . .
    }
  }
}  

// Thread T2
public void leftHand() {
  synchronized(obj2) {
    synchronized(obj1) {
      // work with obj2 & obj1
      . . .
    }
  }
}  
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2. Lovelock-Free Parallel Program

• A parallel program execution exhibits livelock if two or more tasks repeat the same interactions without 
making any progress (special case of nontermination) 

• Livelock example:  

// Task T1 
incrToTwo(AtomicInteger ai) { 
  // increment ai till it reaches 2   
  while (ai.incrementAndGet() < 2); 
} 

• Many well-intended approaches to avoid deadlock result in livelock instead 
• Any HJlib program that uses only Module 1 features, and is data-race-free, is guaranteed to be 

livelock-free (may be nonterminating in a single task, however)
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// Task T2 
decrToNegTwo(AtomicInteger ai) { 
  // decrement ai till it reaches -2  
  while (a.decrementAndGet() > -2); 
}
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3. Starvation-Free Parallel Program Executions

• A parallel program execution exhibits starvation if some task is repeatedly denied the opportunity to 
make progress 
—Starvation-freedom is sometimes referred to as “lock-out freedom” 
—Starvation is possible in HJ programs, since all tasks in the same program are assumed to be 

cooperating, rather than competing 
– If starvation occurs in a deadlock-free HJ program, the “equivalent” sequential program must be 

non-terminating (infinite loop) 

• Classic source of starvation for OS threads: “Priority Inversion” 
—Thread A is at high priority, waiting for result or resource from Thread C at low priority 
—Thread B at intermediate priority is CPU-bound 
—Thread C never runs (because its priority is lower than B’s priority), hence thread A never runs 
—Fix: when a high priority thread waits for a low priority thread, boost the priority of the low-priority 

thread
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4. Bounded Wait

• A parallel program execution exhibits bounded wait if each task requesting a resource should only 
have to wait for a bounded number of other tasks to “cut in line” i.e., to gain access to the resource 
after its request has been registered. 

• If bound = 0, then the program execution is fair
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Key Functional Groups in java.util.concurrent (j.u.c.)

• Atomic variables 
—The key to writing lock-free algorithms 

• Concurrent Collections:  
—Queues, blocking queues, concurrent hash map, … 
—Data structures designed for concurrent environments 

• Locks and Conditions 
—More flexible synchronization control 
—Read/write locks 

• Executors, Thread pools and Futures 
—Execution frameworks for asynchronous tasking 

• Synchronizers: Semaphore, Latch, Barrier, Exchanger 
—Ready made tools for thread coordination
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Semaphores

• Conceptually serve as “permit” holders 
—Construct with an initial number of permits 
—acquire(): waits for permit to be available, then “takes” one, i.e., decrements the count of 

available permits 
—release(): “returns” a permit, i.e., increments the count of available permits 
—But no actual permits change hands 

—The semaphore just maintains the current count 
—Thread performing release() can be different from the thread performing acquire() 

• “fair” variant hands out permits in FIFO order 
• Useful for managing bounded access to a shared resource
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Bounded Blocking Concurrent List using Semaphores
1.public class BoundedBlockingList { 
2.   final int capacity; 
3.   final ConcurrentLinkedList list = new ConcurrentLinkedList();   
4.   final Semaphore sem; 
5.   public BoundedBlockingList(int capacity) { 
6.    this.capacity = capacity; 
7.    sem = new Semaphore(capacity); 
8.  } 
9.  public void addFirst(Object x) throws InterruptedException { 
10.    sem.acquire(); // blocks until a permit is available 
11.    try { list.addFirst(x); }  
12.    catch (Throwable t){ sem.release(); rethrow(t); } // only performed on exception 
13.  } 
14.  public boolean remove(Object x) { 
15.    if (list.remove(x)) {  sem.release(); return true; } 
16.    return false; 
17.  }  
18.  … } // BoundedBlockingList  

12



COMP 322, Spring 2020 (M.Joyner)

Outline

• Safety and Liveness 

• Java Synchronizers: Semaphores 

• Dining Philosophers Problem 
—Acknowledgments 

– CMSC 330 course notes, U. Maryland 
 http://www.cs.umd.edu/~lam/cmsc330/summer2008/lectures/class20-threads_classicprobs.ppt 

– Dave Johnson (COMP 421 instructor)

13



COMP 322, Spring 2020 (M.Joyner)

The Dining Philosophers Problem
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Constraints 
• Five philosophers either eat or think 
• They must have two forks to eat (chopsticks are a better motivation!) 
• Can only use forks on either side of their plate 
• No talking permitted 
Goals 
• Progress guarantees 

• Deadlock freedom 
• Livelock freedom 
• Starvation freedom 
• Maximum concurrency (no one should starve if there are available 

forks for them)
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General Structure of Dining Philosophers Problem: PseudoCode
1. int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5.   while(true) {
6.     Think ;
7.     Acquire forks;
8.       // Left fork = fork[p]
9.       // Right fork = fork[(p-1)%numForks]
10.     Eat ;
11.   } // while
12.} // forall
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Solution 1: using Java’s synchronized statement
1.int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5.   while(true) {
6.     Think ;
7.     synchronized(fork[p])
8.       synchronized(fork[(p-1)%numForks]) {
9.         Eat ;
10.      }
11.    }
12.  } // while
13.} // forall
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Solution 2: using Java’s Lock library
1.int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5.   while(true) {
6.     Think ;
7.     if (!fork[p].lock.tryLock()) continue;
8.     if (!fork[(p-1)%numForks].lock.tryLock()) {
9.       fork[p].lock.unLock(); continue;
10.    }
11.    Eat ; 
12.    fork[p].lock.unlock();fork[(p-1)%numForks].lock.unlock();
13.  } // while
14.} // forall
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Solution 3: using HJ’s isolated statement
1. int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5.   while(true) {
6.     Think ;
7.     isolated {
8.       Pick up left and right forks;
9.       Eat ;
10.     }
11.  } // while
12.} // forall
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Solution 4: using HJ’s object-based isolation
1. int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. forall(point [p] : [0:numPhilosophers-1]) {
5.   while(true) {
6.     Think ;
7.     isolated(fork[p], fork[(p-1)%numForks]) {
8.       Eat ;
9.     }
10.  } // while
11.} // forall

19



COMP 322, Spring 2020 (M.Joyner)

Solution 5: using Java’s Semaphores
1.  int numPhilosophers = 5;
2. int numForks = numPhilosophers;
3. Fork[] fork = ... ; // Initialize array of forks
4. Semaphore table = new Semaphore(3, true);
5. for (i=0;i<numForks;i++) fork[i].sem = new Semaphore(1, true);
6. forall(point [p] : [0:numPhilosophers-1]) {
7.   while(true) {
8.     Think ;
9.     table.acquire(); // At most 3 philosophers at table, assume optimal table assignment
10.    fork[p].sem.acquire(); // Acquire left fork
11.    fork[(p-1)%numForks].sem.acquire(); // Acquire right fork
12.    Eat ;
13.    fork[p].sem.release(); fork[(p-1)%numForks].sem.release();
14.    table.release();
15.  } // while
16.} // forall
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“true” parameter creates 
a semaphore that 
guarantees fairness
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Characterizing Solutions to the Dining Philosophers Problem

For the five solutions studied in today’s lecture, indicate in the table below which of 
the following conditions are possible and why: 

1.Deadlock: when all philosopher tasks are blocked (neither thinking nor eating) 

2.Livelock: when all philosopher tasks are executing but ALL philosophers are starved 

3.Starvation: when one or more philosophers are starved (never get to eat) 

4.Non-Concurrency: when more than one philosopher cannot eat at the same time, 
even when resources are available
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Worksheet: Characterizing Solutions to the Dining Philosophers 
Problem
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Deadlock Livelock Starvation Non-
concurrency

Solution 1: 
synchronized

Solution 2:  
tryLock/
unLock

Solution 3: 
isolated

Solution 4: 
object-based 
isolation

Solution 5: 
semaphores


