
COMP 322 Spring 2021

Lab 8: Actors
Instructor: Mack Joyner

Course Wiki: http://comp322.rice.edu

Staff Email: comp322-staff@mailman.rice.edu

1 Lab Goals

In today’s lab you will use HJlib Actors to approximate Pi using the master-worker paradigm.

This lab can be downloaded from the following GitHub repository: https://classroom.github.com/a/

8CWPlXHo

Use the git command-line client or IntelliJ to checkout the project into appropriate directories locally.

In today’s lab, you need to use NOTS to run performance tests. If you need any guidance on how to submit
jobs on NOTS manually, please refer to Lab 5 or ask a member of the teaching staff.

2 HJlib Actors

HJlib actors were introduced in Lectures 21–23. An actor class is defined by extending the
edu.rice.hj.runtime.actors.Actor class. Concrete sub-classes of Actor are required to implement the
process() method.

The following code snippet shows the schema for defining an actor class:

import edu . r i c e . hj . runtime . a c t o r s . Actor ;
public class EchoActor extends Actor<Object> {

protected void proce s s ( Object aMessage ) {
. . .

}
}

Method calls can be invoked on actor objects, and they work just like method calls on any other HJlib
objects. However, what distinguishes actors from normal objects is that they can be activated by the
start() method, after which the HJlib runtime ensures that the actor’s process() method is called in
sequence for each message sent to the actor’s mailbox. The actor can terminate itself by calling exit() in
a process() call.

Messages can be sent to actors from actor code or non-actor code by invoking the actor’s send() method using
a call as follows, “ someActor.send(aMessage)”. A send() operation is non-blocking and asynchronous.
The HJlib Actor library preserves the order of messages between a sender and receiver pair, but messages
from different senders may be interleaved in an arbitrary order at a single receiver.

As mentioned in the lectures, there are three basic states for an actor:

• new: when an instance of an actor is created, it is in the new state. In this state, an HJlib actor will
receive messages sent to its mailbox but will not process them.

• started: in this state, the actor will process all messages in its mailbox, one at a time. It will keep
doing so until it decides to terminate. In HJlib, an actor is started by invoking its start() method:
e.g., “myActor.start()”.

1 of 3

http://comp322.rice.edu
mailto:comp322-staff@mailman.rice.edu
https://classroom.github.com/a/8CWPlXHo
https://classroom.github.com/a/8CWPlXHo


COMP 322
Spring 2021

Lab 8: Actors

• terminated: in this state the actor has decided it will no longer process any more messages. Once
terminated, an actor cannot be restarted. An actor requests termination by calling its exit() method,
which changes the actor’s state to terminated after the process() call containing exit() returns. Note
that the exit() call does not itself result in an immediate termination of the process() call; it just
ensures that no subsequent messages will be processed.

All async tasks created internally within an actor are registered on the finish scope that contained the
actor’s start() operation. The finish scope will block until all actors started within it terminate. This is
similar to the finish semantics while dealing with asyncs.

Other examples that were discussed in Lectures 22–23 include Pipeline.java and ThreadRingMain.java.

2.1 Tips and Pitfalls

• Use an actor-first approach when designing programs that use actors i.e., think about which actors
need to be created and how they will communicate with each other. This step will also require you to
think about the communication objects used as messages.

• If possible, use immutable objects for messages, since doing so avoids data races and simplifies debug-
ging of parallel programs.

• When overriding the start() or exit() methods in actor classes, remember to make the appropriate
calls to the parent’s implementation with super.start() or super.exit(), respectively,

• The HJlib actor start() method is not idempotent. Take care to ensure you do not invoke start()

on the same actor instance more than once. The exit() method on the other hand is idempotent,
invoking exit() multiple times is safe within the same call to process().

• Always remember to ensure that all started actors terminate using the exit() method.
If an actor that has been started but is not terminated, the enclosing finish will wait
forever (deadlock).

• When sending asynchronous messages to actors, be careful to use Actor.send(), not Actor.process().
Calling Actor.process() will do the work synchronously, and not create any parallel work.

• The Javadoc for the Actor class is available at http://www.cs.rice.edu/~vs3/hjlib/doc/edu/

rice/hj/runtime/actors/Actor.html. There is also an actor section in the HJlib docs at http:

//pasiphae.cs.rice.edu/searchQuery?query=actor#hjlib-actors.

3 Pi Computation using Bailey-Borwein-Plouffe Formula

Our first exercise involves computing π to a specified precision using HJlib. The following formula can be
used to compute π:

π =

∞∑
n=0

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)(
1

16

)n

The PiSerial1.java file contains a simple sequential algorithm for computing π using Java’s BigDecimal

data type, that runs for a fixed number of iterations. The PiActor1.java file contains a parallel version of
PiSerial1.java using Master-Worker style actors, as explained in Lecture 22.

In contrast, the PiSerial2.java file contains a more realistic sequential algorithm that uses a while loop
to compute more and more terms of the series until a desired precision is reached.

We have already provided a version of PiActor2.java with TODO comments. For this section, your assignment
is to convert the sequential program in PiSerial2.java (for computing π to a desired precision) to an
actor-based parallel program in PiActor2.java by filling in code at the TODO segments. Next, you will

2 of 3

http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/runtime/actors/Actor.html
http://www.cs.rice.edu/~vs3/hjlib/doc/edu/rice/hj/runtime/actors/Actor.html
http://pasiphae.cs.rice.edu/searchQuery?query=actor#hjlib-actors
http://pasiphae.cs.rice.edu/searchQuery?query=actor#hjlib-actors
http://mathworld.wolfram.com/BBPFormula.html


COMP 322
Spring 2021

Lab 8: Actors

need to evaluate the performance of the serial and parallel versions, PiSerial2.java and PiActor2.java,
on a NOTS compute node. The reference implementation achieved over 11× speedup over the sequential
implementation on NOTS while using 16 worker threads. You will need to achieve at least 2x speedup on a
manual NOTS submission to receive credit for the lab. Remember to edit your slurm file before submitting
the NOTS run.

Note that because the template PiActor2 class has no functionality filled in, running the tests without any
changes will cause them to hang.

4 Turning in your lab work

For this lab, you will need to turn in your work before leaving, as follows.

1. Show your work to an instructor or TA to get credit for this lab, including the output of the NOTS
performance test for PiActor2 by Monday, April 26th at 12pm (noon).

2. Check that all the work for today’s lab is in the lab8 directory.

3 of 3


	Lab Goals
	HJlib Actors
	Tips and Pitfalls

	Pi Computation using Bailey-Borwein-Plouffe Formula
	Turning in your lab work

