COMP 322 Spring 2022

Homework 3: due by 11:59pm on Friday, March 4, 2022
(Total: 100 points)

Mackale Joyner, Zoran Budimli¢,

Commit all work to the github classroom hw3 repo at https://classroom.github.com/a/Ez_y3wlU
that we created for you. In case of problems committing your files, please contact the teaching
staff at comp322-staff@mailman.rice.edu before the deadline to get help resolving your issues.

Your solution to the written assignment should be submitted as a PDF file named hw3_written.pdf
in your github classroom hw3 top level directory. This is important — you will be penalized
5 points if you place the file in some other folder or with some other name. The PDF file can
be created however you choose. If you scan handwritten text, make sure that the writing is
clearly legible in the scanned copy. Your solution to the programming assignment should be
submitted in the appropriate location in the hw3 directory.

The slip day policy for COMP 322 is similar to that of COMP 321. All students will be given
3 slip days to use throughout the semester. When you use a slip day, you will receive up to 24
additional hours to complete the assignment. You may use these slip days in any way you see
fit (3 days on one assignment, 1 day each on 3 assignments, etc.). If you plan to use a slip day,
you need to say so in an github committed README.md file before the deadline. You should
specifically mention how many slip days you plan to use. The README.md file should be
placed in the top level directory (e.g. hw3). Other than slip days, no extensions will be given
unless there are exceptional circumstances (such as severe sickness, not because you have too
much other work). Such extensions must be requested and approved by the instructor (via
e-mail, phone, or in person) before the due date for the assignment. Last minute requests are
likely to be denied.

If you see ambiguity or inconsistency in a question, please seek clarification on Piazza (remem-
ber not to share homework solutions in public posts) or from the teaching staff. If it is not
resolved through those channels, you should state the ambiguity/inconsistency that you see,
as well as any assumptions that you make to resolve it.

Honor Code Policy: All submitted homework is expected to be the result of your individual effort. You are
free to discuss course material and approaches to problems with your other classmates, the teaching assistants
and the instructors, but you should never misrepresent someone else’s work as your own. If you use any
material from external sources, you must provide proper attribution.

1 Written Assignments (50 points total)

As mentioned earlier, your solution to the written assignment should be submitted as a PDF file named
hw3_written.pdf in the hw3 directory.

1.1 Amdahl’s Law (25 points)

In Lecture 13 (Topic 1.5), you will learn the following statement of Amdahl’s Law:

If g < 1 is the fraction of WORK in a parallel program that must be executed sequentially, then
the best speedup that can be obtained for that program, even with an unbounded number of
processors, is Speedup < 1/q.

Now, consider the following generalization of Amdahl’s Law. Let ¢; be the fraction of WORK in a parallel
program that must be executed sequentially, g2 be the fraction of WORK that can use at most 2 processors,
and (1 — g1 — ¢2) the fraction of WORK that can use an unbounded number of processors. The fractions of

1of 3


https://classroom.github.com/a/Ez_y3w1U
comp322-staff@mailman.rice.edu

Homework 3: due by 11:59pm on Friday, March 4, 2022
COMP 322 (Total: 100 points)
Spring 2022

WORK represented by q1, g2, and (1 — ¢; — g2) are disjoint, and cannot be overlapped with each other in a
parallel execution. Your assignment is is as follows:

1. (10 points) Provide the best possible (smallest) upper bound on the Speedup as a function of q1 and ¢2.

2. (15 points) Ezxplain your answer, and justify why it is a correct upper bound. Use the cases when
q1=0,q2=0,q1 =1 or gs =1 to explain why your bound is correct.

Hints:
e As with Amdahl’s Law, your answer should not include the number of processors, P. It should be an
upper bound that applies to all values of P.

e To check your answer, consider the cases when ¢; or ¢y are equal to 0 or 1.

1.2 Finish Accumulators (25 points)

Consider the pseudocode shown below in Listing 1 for a Parallel Search algorithm that is intended to compute
@, the number of occurrences of the pattern array in the text array. What possible values can variables
count0, countl, and count2 contain at line 167 Write your answers in terms of M, N, and @), and explain
your answers.

1| // Assume that countO, countl, count2 are declared

2| // as object/static fields of type int

3. ..

4| count0 = O0;

5| accumulator a = new accumulator (SUM, int.class);

6| finish (a) {

7 for (int i = 0; i <= N —M; i++4)

8 async {

9 int j;

10 for (j = 0; j <M; j++) if (text[i+j] != pattern[j]) break;
11 if (j =M) { countO++; a.put(1l); } // found at offset i
12 countl = a.get();

13 } // for—async

14| } // finish

15| count2 = a.get ();

16| // Print countO, countl, count2

Listing 1: Parallel Search using Finish Accumulators

Hints based on common errors from past years: Be sure to include exactly all possible values for the variables,
not a subset or superset of the values. Remember to use @) in your answers, even though ) can have different
values for different values of the text[] and pattern[] arrays (even for the same values of M and N.)
Finally, don’t forget to explain your answers.

2 Programming Assignment (50 points)

2.1 Habanero-Java Library (HJ-lib) Setup

See the Lab 1 handout for instructions on HJ-lib installation for use in this homework, and Lecture 3 for
information on abstract execution metrics.

20f 3



Homework 3: due by 11:59pm on Friday, March 4, 2022
COMP 322 (Total: 100 points)
Spring 2022

2.2 Parallel Sort (50 points)

In this homework, we have provided you with sequential implementations of two sorting algorithms. Both
sorting algorithms have been implemented in a file of their own, e.g. QuickSort.java and MergeSort. java,

Your assignment is to write a correct parallel version of any sort algorithm that you choose by overriding
the parSort () method. The goal is to obtain the smallest possible CPL wvalue that you can for the given
input, as measured using abstract erecution metrics. A secondary goal is to not increase the WORK wvalue
significantly when doing so, but some increase is fine. Your edits should be restricted to the file for that given
sort algorithm and the sortInstance() method in Homework3.java. A correct parallel program should
generate the same output as the sequential version, and should not exhibit any data races. The parallelism
in your solution should be expressed using only async and finish constructs. It should pass the unit tests
provided, and other tests that the teaching staff may use while grading.

For the abstract metrics in this assignment, we only count 1 unit of work for each call to compareTo (). We’ll
ignore the cost of everything else. While this seems idealistic, it is a reasonable assumption when sorting is
performed on objects with large keys.

Your submission should include the following in the hw3 directory:

1. (25 points) A complete parallel solution for a sorting algorithm of your choice in a modified Java file.
For example, if you chose to parallelize Merge Sort, you need to ensure MergeSort. java is included in
your submission. In addition, you will need to edit the sortInstance() method in Homework3.java
to return an instance of MergeSort. We will only evaluate its performance using abstract metrics, and
not its actual execution time.

(a) 15 points will be allocated based on the ideal parallelism that you achieve. You will get the full
15 points if you achieve a CPL of O(n) or better for an array of n elements.

(b) 10 points will be allocated for coding style and documentation. We have provided the basic
checkstyle rules as part of your Maven project. At a minimum, all code should include basic
documentation for each method in each class. You are also welcome to add additional unit tests
to test corner cases and ensure the correctness of your implementation.

2. (15 points) A report file formatted as a PDF file named hw3_report.pdf in the hw3 top level directory.
The report should contain the following:

(a) A summary of your parallel algorithm. You should write a few sentences describing the approach
and the algorithm.

(b) An explanation as to why you believe that your implementation is correct and data-race-free.

(¢) An explanation of what values of WORK and CPL (as formulae of n) you expect to see from your
algorithm.

3. (10 points) The report file should also include test output for sorting an array of size n = 1024 (i.e.
the unit test name testRandomDatalInputiK). The test output should include the WORK, CPL, and
IDEAL PARALLELISM (= WORK/CPL) values.

3 Submitting Your Assignment

You will need to add, commit, and push all work to the github classroom hw3 repository at https://
classroom.github.com/a/Ez_y3wlU. You should have both a hw3_written.pdf and a hw3_report.pdf file
in the hw3 top level directory. Please open a browser, navigate to the url, and verify that you successfully
committed your homework. Don’t forget to modify the README.md file if you plan to use slip days.

3of3


https://classroom.github.com/a/Ez_y3w1U
https://classroom.github.com/a/Ez_y3w1U

	Written Assignments (50 points total)
	Amdahl's Law (25 points)
	Finish Accumulators (25 points)

	Programming Assignment (50 points)
	Habanero-Java Library (HJ-lib) Setup
	Parallel Sort (50 points)

	Submitting Your Assignment

