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Computation Graphs

•  Structured parallelism (finish/async): 

Create structured graphs (similar to what structured programming can create)

No high-level data representation: have to share data

Fast implementation, easy to synchronize large # of tasks


•  Futures and future tasks: 

Easy to construct unstructured, arbitrary graphs

Elegant, functional high-level data representation: futures

Functional, “push” model: “where is the data going to, create futures for those”

Large overhead when handling large # of tasks


•  Promises and data-driven tasks: 

Easy to construct unstructured, arbitrary graphs with unknown task-promise association

Data-driven, “pull” model: “what data does this DDT depend on, create promises for those”

Can have a faster implementation than futures

Large overhead when handling large # of tasks
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Ordering Constraints and Transitive Edges in a Computation Graph

•The primary purpose of a computation graph is to determine if an ordering constraint exists between 
two steps (nodes)

—Observation: Node A must be performed before node B if there is a path of directed edges 
from A and B


•An edge, X →Y, in a computation graph  is said to be transitive if there exists a path of directed edges 
from X to Y that does not include the X →Y edge

—Observation: Adding or removing a transitive edge does not change the ordering 
constraints in a computation graph

4



COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Ideal Parallelism (Recap)

• Define ideal parallelism of Computation G Graph as the ratio, 
WORK(G)/CPL(G)


• Ideal Parallelism only depends on the computation graph, and is 
the speedup that you can obtain with an unbounded number of 
processors
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Example:

WORK(G) = 26

CPL(G) = 11

Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36
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What is the critical path length of this 
parallel computation?
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1.  finish (() -> {        // F1

2.    async (() -> A);     // Boil water & pasta (10)

3.    finish (() -> {      // F2

4.      async (() -> B1);  // Chop veggies (5)

5.      async (() -> B2);  // Brown meat (10)

6.    });                  // F2

7.    B3;                  // Make pasta sauce (5)

8.  })                     // F1

Step A

Step B1 Step B2
Step B3
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Scheduling of a Computation Graph on a fixed 
number of processors

Node label = time(N), for all nodes N in the graph
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NOTE: this schedule achieved a 
completion time of 11.  Can we 
do better?
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Scheduling of a Computation Graph on a fixed 
number of processors

•Assume that node N takes TIME(N) regardless of which processor it executes on, and that there is no overhead for 
creating parallel tasks


•A schedule specifies the following for each node

—START(N) = start time

—PROC(N) = index of processor in range 1...P


such that

—START(i) + TIME(i) <= START(j), for all CG edges from i to j (Precedence constraint)

—A node occupies consecutive time slots in a processor (Non-preemption constraint)

—All nodes assigned to the same processor occupy distinct time slots (Resource constraint)
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Greedy Schedule

•A greedy schedule is one that never forces a processor to be idle when one or more nodes are 
ready for execution 


• A node is ready for execution if all its predecessors have been executed


• Observations

—T1 = WORK(G), for all greedy schedules

—T∞ = CPL(G), for all greedy schedules


• TP(S) = execution time of schedule S for computation graph G on P processors
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Lower Bounds on Execution Time of Schedules

•Let TP = execution time of a schedule for computation graph G on P processors


—TP  can be different for different schedules, for same values of G and P


•Lower bounds for all greedy schedules

—Capacity bound: TP  ≥ WORK(G)/P

—Critical path bound: TP  ≥ CPL(G)


•Putting them together

—TP  ≥ max(WORK(G)/P, CPL(G))
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Upper Bound on Execution Time of Greedy 
Schedules
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Theorem [Graham ’66]. 

Any greedy scheduler achieves


TP ≤ WORK(G)/P + CPL(G)

Proof sketch:

Define a time step to be complete if P processors are 

scheduled at that time, or incomplete otherwise


# complete time steps ≤ WORK(G)/P


# incomplete time steps ≤ CPL(G) 
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Bounding the Performance of Greedy 
Schedulers

Combine lower and upper bounds to get 

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)


Corollary: Any greedy scheduler achieves execution time TP that is within a factor of 2 of the optimal 
time (since max(a,b) and (a+b) are within a factor of 2 of each other, for any a ≥ 0,b ≥ 0 ).


Corollary 2: Lower and upper bounds approach the same value whenever:

There’s lots of parallelism, WORK(G)/CPL(G) >> P

Or there’s little parallelism,  WORK(G)/CPL(G) << P  
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Abstract Performance Metrics

• Basic Idea


• Count operations of interest, as in big-O analysis, to evaluate parallel algorithms


• Abstraction ignores many overheads that occur on real systems


• Calls to doWork()


• Programmer inserts calls of the form, doWork(N) within a task (async, future task or data-driven task) to indicate abstract 
execution of N application-specific abstract operation


• e.g., in lab 4, we included one call to doWork(1) for each double addition, and ignore the cost of everything else


• Abstract metrics are enabled by calling HjSystemProperty.abstractMetrics.set(true) at start of program 
execution


• If an HJ program is executed with this option, abstract metrics can be printed at end of program execution with 
calls to abstractMetrics().totalWork(), abstractMetrics().criticalPathLength(), and 
abstractMetrics().idealParallelism()
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Abstract Performance Metrics

• Pay attention where you put doWork() calls


• What does this mean?

var bottom = future(() -> . . .);

var top = future(() -> . . .)

doWork(1);

return bottom.get() + top.get();
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• Correct:

var bottom = future(() -> . . .);

var top = future(() -> . . .);


var bottomVal = bottom.get();

var topVal = top.get();

doWork(1);

return bottomVal + topVal;



