
COMP 322: Parallel and Concurrent Programming

Lecture 12: Scheduling

Zoran Budimlić and Mack Joyner

{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322	 Lecture 12	 7 February 2022

http://comp322.rice.edu

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Computation Graphs

2

Structured Parallelism

(Finish/async)

Futures and Future Tasks Promises and Data-Driven Tasks

< <

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Computation Graphs

• Structured parallelism (finish/async):

Create structured graphs (similar to what structured programming can create)

No high-level data representation: have to share data

Fast implementation, easy to synchronize large # of tasks

• Futures and future tasks:

Easy to construct unstructured, arbitrary graphs

Elegant, functional high-level data representation: futures

Functional, “push” model: “where is the data going to, create futures for those”

Large overhead when handling large # of tasks

• Promises and data-driven tasks:

Easy to construct unstructured, arbitrary graphs with unknown task-promise association

Data-driven, “pull” model: “what data does this DDT depend on, create promises for those”

Can have a faster implementation than futures

Large overhead when handling large # of tasks

3

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Ordering Constraints and Transitive Edges in a Computation Graph

•The primary purpose of a computation graph is to determine if an ordering constraint exists between
two steps (nodes)

—Observation: Node A must be performed before node B if there is a path of directed edges
from A and B

•An edge, X →Y, in a computation graph is said to be transitive if there exists a path of directed edges
from X to Y that does not include the X →Y edge

—Observation: Adding or removing a transitive edge does not change the ordering
constraints in a computation graph

4

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Ideal Parallelism (Recap)

• Define ideal parallelism of Computation G Graph as the ratio,
WORK(G)/CPL(G)

• Ideal Parallelism only depends on the computation graph, and is
the speedup that you can obtain with an unbounded number of
processors

5

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1
Example:

WORK(G) = 26

CPL(G) = 11

Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

What is the critical path length of this
parallel computation?

6

1. finish (() -> { // F1

2. async (() -> A); // Boil water & pasta (10)

3. finish (() -> { // F2

4. async (() -> B1); // Chop veggies (5)

5. async (() -> B2); // Brown meat (10)

6. }); // F2

7. B3; // Make pasta sauce (5)

8. }) // F1

Step A

Step B1 Step B2
Step B3

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Scheduling of a Computation Graph on a fixed
number of processors

Node label = time(N), for all nodes N in the graph

7

NOTE: this schedule achieved a
completion time of 11. Can we
do better?

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1

A

B

C

D

Start time Proc 1 Proc 2 Proc 3

0 A

1 B

2 C N

3 D N I

4 D N J

5 D N K

6 D Q L

7 E R M

8 F R O

9 G R P

10 H

11 Completion time = 11

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Scheduling of a Computation Graph on a fixed
number of processors

•Assume that node N takes TIME(N) regardless of which processor it executes on, and that there is no overhead for
creating parallel tasks

•A schedule specifies the following for each node

—START(N) = start time

—PROC(N) = index of processor in range 1...P

such that

—START(i) + TIME(i) <= START(j), for all CG edges from i to j (Precedence constraint)

—A node occupies consecutive time slots in a processor (Non-preemption constraint)

—All nodes assigned to the same processor occupy distinct time slots (Resource constraint)

8

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Greedy Schedule

•A greedy schedule is one that never forces a processor to be idle when one or more nodes are
ready for execution

• A node is ready for execution if all its predecessors have been executed

• Observations

—T1 = WORK(G), for all greedy schedules

—T∞ = CPL(G), for all greedy schedules

• TP(S) = execution time of schedule S for computation graph G on P processors

9

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Lower Bounds on Execution Time of Schedules

•Let TP = execution time of a schedule for computation graph G on P processors

—TP can be different for different schedules, for same values of G and P

•Lower bounds for all greedy schedules

—Capacity bound: TP ≥ WORK(G)/P

—Critical path bound: TP ≥ CPL(G)

•Putting them together

—TP ≥ max(WORK(G)/P, CPL(G))

10

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Upper Bound on Execution Time of Greedy
Schedules

11

Start time Proc 1 Proc 2 Proc 3

0 A

1 B

2 C N

3 D N I

4 D N J

5 D N K

6 D Q L

7 E R M

8 F R O

9 G R P

10 H

11

Theorem [Graham ’66].

Any greedy scheduler achieves

TP ≤ WORK(G)/P + CPL(G)

Proof sketch:

Define a time step to be complete if P processors are

scheduled at that time, or incomplete otherwise

complete time steps ≤ WORK(G)/P

incomplete time steps ≤ CPL(G)

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Bounding the Performance of Greedy
Schedulers

Combine lower and upper bounds to get

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

Corollary: Any greedy scheduler achieves execution time TP that is within a factor of 2 of the optimal
time (since max(a,b) and (a+b) are within a factor of 2 of each other, for any a ≥ 0,b ≥ 0).

Corollary 2: Lower and upper bounds approach the same value whenever:

There’s lots of parallelism, WORK(G)/CPL(G) >> P

Or there’s little parallelism, WORK(G)/CPL(G) << P

12

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Abstract Performance Metrics

• Basic Idea

• Count operations of interest, as in big-O analysis, to evaluate parallel algorithms

• Abstraction ignores many overheads that occur on real systems

• Calls to doWork()

• Programmer inserts calls of the form, doWork(N) within a task (async, future task or data-driven task) to indicate abstract
execution of N application-specific abstract operation

• e.g., in lab 4, we included one call to doWork(1) for each double addition, and ignore the cost of everything else

• Abstract metrics are enabled by calling HjSystemProperty.abstractMetrics.set(true) at start of program
execution

• If an HJ program is executed with this option, abstract metrics can be printed at end of program execution with
calls to abstractMetrics().totalWork(), abstractMetrics().criticalPathLength(), and
abstractMetrics().idealParallelism()

13

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Abstract Performance Metrics

• Pay attention where you put doWork() calls

• What does this mean?

var bottom = future(() -> . . .);

var top = future(() -> . . .)

doWork(1);

return bottom.get() + top.get();

14

• Correct:

var bottom = future(() -> . . .);

var top = future(() -> . . .);

var bottomVal = bottom.get();

var topVal = top.get();

doWork(1);

return bottomVal + topVal;

