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Preventing Hw #2 GUI Freeze

Put inside button.addActionListener() lambda body:

new Thread(() -> {
launchHabaneroApp(() -> {

.. loadContributorsPar(..) ..
})i
}).start();
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Parallel Speedup

o Define Speedup(P) =T,/ Tp
—rFactor by which P processors speeds up execution time relative to 1 processor, for fixed input size

—For ideal executions without overhead, 1 <= Speedup(P) <= P

—You see this with abstract metrics, but bounds may not hold when measuring real execution times with
real overheads

—Linear speedup
- When Speedup(P) = k*P, for some constantk, 0 <k <1

o [deal Parallelism = WORK/CPL = T,/ T.
= Parallel Speedup on an unbounded (infinite) number of processors
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Computation Graph for Recursive Tree approach to computing
Arrav Sum in parallel
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Assume greedy schedule, input array size S is a power of 2, each add takes 1 time unit

* \WORK(G) = S-1, and CPL(G) = log2(S)
* Define T(S,P) = parallel execution time for Array Sum with size S on P processors
* Use upper bound T(S,P) <= WORK(G)/P + CPL(G) as a worst-case estimate

T(S,P) = WORK(G)/P + CPL(G) = (S-1)/P +log2(S) = Speedup(S,P) = T(S.1)/T(S,P) = (S-1)/((S-1)/P + log2(S))
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How many processors should we use?

Define Efficiency(P) = Speedup(P)/ P = T+/(P * Tp)
—Processor efficiency --- figure of merit that indicates how well a parallel program uses available
processors
—For ideal executions without overhead, 1/P <= Efficiency(P) <=1

—Efficiency(P) = 1 (100%) is the best we can hope for
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How many processors should we use?

What should be the minimum efficiency to determine how many processors we should use?
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How many processors should we use?
« Common goal: choose number P for a given input size, S, so that efficiency is at least 0.5 (50%)

* Half-performance metric
—S172 = Input size that achieves Efficiency(P) = 0.5 for a given P
—Figure of merit that indicates how large an input size is needed to obtain efficient parallelism
—A larger value of S12 indicates that the problem is harder to parallelize efficiently
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Array Sum: Speedup as a function of array size S and number of
processors P

« Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + logz(S))
 Asymptotically, Speedup(S,P) — (S-1)/log2S, as P — infinity
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Array Sum: Speedup as a function of array size S and number of
processors P

« Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + logz(S))
 Asymptotically, Speedup(S,P) — (S-1)/log2S, as P — infinity
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Amdahl’s Law

If g < 1 is the fraction of WORK in a parallel program that must be executed sequentially for a given
input size S, then the best speedup that can be obtained for that program is Speedup(S,P) < 1/q.
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Amdahl’s Law

Observation follows directly from critical path length lower bound on parallel execution time
— CPL>=q*T(S,1)
— T(S,P)>=q* T(S,1)
— Speedup(S,P) = T(S,D/T(S,P) <= 1/g

Upper bound on speedup simplistically assumes that work can be divided into sequential and
parallel portions

—Sequential portion of WORK = q
- also denoted as fs (fraction of sequential work)

—~Parallel portion of WORK = 1-q
- also denoted as f; (fraction of parallel work)
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lllustration of Amdahl’s Law:
Best Case Speedup as function of Parallel Portion
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Announcements & Reminders

« Quiz #3 is due Tuesday, Feb. 15th at 11:59pm
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