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Preventing Hw #2 GUI Freeze
Put inside button.addActionListener() lambda body:


new Thread(() -> { 


    launchHabaneroApp(() -> {


      … loadContributorsPar(…) …


    });


}).start();
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Parallel Speedup

•Define Speedup(P) = T1 / TP

—Factor by which P processors speeds up execution time relative to 1 processor, for fixed input size

—For ideal executions without overhead, 1 <= Speedup(P) <= P


—You see this with abstract metrics, but bounds may not hold when measuring real execution times with 
real overheads


—Linear speedup 

–When Speedup(P) = k*P, for some constant k, 0 < k < 1


•Ideal Parallelism  =  WORK / CPL  =  T1 / T∞

= Parallel Speedup on an unbounded (infinite) number of processors
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Computation Graph for Recursive Tree approach to computing

Array Sum in parallel

Assume greedy schedule, input array size S is a power of 2, each add takes 1 time unit

•WORK(G) = S-1, and CPL(G) = log2(S)

•Define T(S,P) = parallel execution time for Array Sum with size S on P processors

•Use upper bound T(S,P) <= WORK(G)/P + CPL(G) as a worst-case estimate


T(S,P) = WORK(G)/P + CPL(G) = (S-1)/P + log2(S)   ⇒   Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + log2(S))
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How many processors should we use?
Define Efficiency(P) = Speedup(P)/ P = T1/(P * TP)


—Processor efficiency --- figure of merit that indicates how well a parallel program uses available 
processors


—For ideal executions without overhead, 1/P <= Efficiency(P) <= 1

—Efficiency(P) = 1 (100%) is the best we can hope for

5



COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

How many processors should we use?
What should be the minimum efficiency to determine how many processors we should use?
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How many processors should we use?

•Common goal: choose number P for a given input size, S, so that efficiency is at least 0.5 (50%)


•Half-performance metric

—S1/2 = input size that achieves Efficiency(P) = 0.5 for a given P

—Figure of merit that indicates how large an input size is needed to obtain efficient parallelism

—A larger value of S1/2 indicates that the problem is harder to parallelize efficiently
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Array Sum: Speedup as a function of array size S and number of 
processors P

•Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + log2(S))

• Asymptotically, Speedup(S,P) →(S-1)/log2S, as P → infinity
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Array Sum: Speedup as a function of array size S and number of 
processors P

•Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + log2(S))

• Asymptotically, Speedup(S,P) →(S-1)/log2S, as P → infinity
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Amdahl’s Law
If q ≤ 1 is the fraction of WORK in a parallel program that must be executed sequentially for a given 
input size S, then the best speedup that can be obtained for that program is Speedup(S,P) ≤ 1/q.
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Amdahl’s Law 

• Observation follows directly from critical path length lower bound on parallel execution time

— CPL >= q * T(S,1)

— T(S,P) >= q * T(S,1) 

— Speedup(S,P) = T(S,1)/T(S,P) <= 1/q


• Upper bound on speedup simplistically assumes that work can be divided into sequential and 
parallel portions


—Sequential portion of WORK = q

– also denoted as fS (fraction of sequential work)


—Parallel portion of WORK = 1-q

– also denoted as fp (fraction of parallel work)
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Illustration of Amdahl’s Law: 

Best Case Speedup as function of Parallel Portion
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Announcements & Reminders

• Quiz #3 is due Tuesday, Feb. 15th at 11:59pm
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