
COMP 322: Fundamentals of Parallel Programming

Lecture 13: Parallel Speedup and Amdahl’s Law

Mack Joyner and Zoran Budimlić

{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322	 Lecture 13	 February 2022

http://comp322.rice.edu

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Preventing Hw #2 GUI Freeze
Put inside button.addActionListener() lambda body:

new Thread(() -> {

 launchHabaneroApp(() -> {

 … loadContributorsPar(…) …

 });

}).start();

2

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Parallel Speedup

•Define Speedup(P) = T1 / TP

—Factor by which P processors speeds up execution time relative to 1 processor, for fixed input size

—For ideal executions without overhead, 1 <= Speedup(P) <= P

—You see this with abstract metrics, but bounds may not hold when measuring real execution times with
real overheads

—Linear speedup

–When Speedup(P) = k*P, for some constant k, 0 < k < 1

•Ideal Parallelism = WORK / CPL = T1 / T∞

= Parallel Speedup on an unbounded (infinite) number of processors

3

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Computation Graph for Recursive Tree approach to computing

Array Sum in parallel

Assume greedy schedule, input array size S is a power of 2, each add takes 1 time unit

•WORK(G) = S-1, and CPL(G) = log2(S)

•Define T(S,P) = parallel execution time for Array Sum with size S on P processors

•Use upper bound T(S,P) <= WORK(G)/P + CPL(G) as a worst-case estimate

T(S,P) = WORK(G)/P + CPL(G) = (S-1)/P + log2(S) ⇒ Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + log2(S))

4

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

How many processors should we use?
Define Efficiency(P) = Speedup(P)/ P = T1/(P * TP)

—Processor efficiency --- figure of merit that indicates how well a parallel program uses available
processors

—For ideal executions without overhead, 1/P <= Efficiency(P) <= 1

—Efficiency(P) = 1 (100%) is the best we can hope for

5

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

How many processors should we use?
What should be the minimum efficiency to determine how many processors we should use?

6

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

How many processors should we use?

•Common goal: choose number P for a given input size, S, so that efficiency is at least 0.5 (50%)

•Half-performance metric

—S1/2 = input size that achieves Efficiency(P) = 0.5 for a given P

—Figure of merit that indicates how large an input size is needed to obtain efficient parallelism

—A larger value of S1/2 indicates that the problem is harder to parallelize efficiently

7

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Array Sum: Speedup as a function of array size S and number of
processors P

•Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + log2(S))

• Asymptotically, Speedup(S,P) →(S-1)/log2S, as P → infinity

8

Number of processors, P (log scale)

Sp
ee

du
p(

S,
P)

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1" 2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Speedup"(S=1024)" Speedup"(S=2048)"

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Array Sum: Speedup as a function of array size S and number of
processors P

•Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + log2(S))

• Asymptotically, Speedup(S,P) →(S-1)/log2S, as P → infinity

9

Number of processors, P (log scale)

Sp
ee

du
p(

S,
P)

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1" 2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Speedup"(S=1024)" Speedup"(S=2048)"
Efficiency(P) ≤ 0.5,

for P ≥ 256

==> wasteful to use
more than 256
processors for S=2048

Efficiency(P) ≤ 0.5,

for P ≥ 128

==> wasteful to use
more than 128
processors for S=1024

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Amdahl’s Law
If q ≤ 1 is the fraction of WORK in a parallel program that must be executed sequentially for a given
input size S, then the best speedup that can be obtained for that program is Speedup(S,P) ≤ 1/q.

10

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Amdahl’s Law

• Observation follows directly from critical path length lower bound on parallel execution time

— CPL >= q * T(S,1)

— T(S,P) >= q * T(S,1)

— Speedup(S,P) = T(S,1)/T(S,P) <= 1/q

• Upper bound on speedup simplistically assumes that work can be divided into sequential and
parallel portions

—Sequential portion of WORK = q

– also denoted as fS (fraction of sequential work)

—Parallel portion of WORK = 1-q

– also denoted as fp (fraction of parallel work)

11

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Illustration of Amdahl’s Law:

Best Case Speedup as function of Parallel Portion

12

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Announcements & Reminders

• Quiz #3 is due Tuesday, Feb. 15th at 11:59pm

13

