COMP 322: Fundamentals of Parallel Programming

Lecture 13: Parallel Speedup and Amdahl’s Law

Mack Joyner and Zoran BudimliC
{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 13 February 2022

http://comp322.rice.edu

Preventing Hw #2 GUI Freeze

Put inside button.addActionListener() lambda body:

new Thread(() -> {
launchHabaneroApp(() -> {

.. loadContributorsPar(..) ..
})i
}).start();

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

.-.98
2

Parallel Speedup

o Define Speedup(P) =T,/ Tp
—rFactor by which P processors speeds up execution time relative to 1 processor, for fixed input size

—For ideal executions without overhead, 1 <= Speedup(P) <= P

—You see this with abstract metrics, but bounds may not hold when measuring real execution times with
real overheads

—Linear speedup
- When Speedup(P) = k*P, for some constantk, 0 <k <1

o [deal Parallelism = WORK/CPL = T,/ T.
= Parallel Speedup on an unbounded (infinite) number of processors

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

2

Computation Graph for Recursive Tree approach to computing
Arrav Sum in parallel

K[} A X2 R3] X[4] APl Ko R[7]

N/ N\ N\ N\

@ stride = 1, size =4

X[0] X[2] X[4] A

stride = 2, size = 2

X[0] X[4]
@ stride = 4, size = 1

|

X[0]
Assume greedy schedule, input array size S is a power of 2, each add takes 1 time unit

* \WORK(G) = S-1, and CPL(G) = log2(S)
* Define T(S,P) = parallel execution time for Array Sum with size S on P processors
* Use upper bound T(S,P) <= WORK(G)/P + CPL(G) as a worst-case estimate

T(S,P) = WORK(G)/P + CPL(G) = (S-1)/P +log2(S) = Speedup(S,P) = T(S.1)/T(S,P) = (S-1)/((S-1)/P + log2(S))

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

.}8
2

How many processors should we use?

Define Efficiency(P) = Speedup(P)/ P = T+/(P * Tp)
—Processor efficiency --- figure of merit that indicates how well a parallel program uses available
processors
—For ideal executions without overhead, 1/P <= Efficiency(P) <=1

—Efficiency(P) = 1 (100%) is the best we can hope for

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

How many processors should we use?

What should be the minimum efficiency to determine how many processors we should use?

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

How many processors should we use?
« Common goal: choose number P for a given input size, S, so that efficiency is at least 0.5 (50%)

* Half-performance metric
—S172 = Input size that achieves Efficiency(P) = 0.5 for a given P
—Figure of merit that indicates how large an input size is needed to obtain efficient parallelism
—A larger value of S12 indicates that the problem is harder to parallelize efficiently

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

Array Sum: Speedup as a function of array size S and number of
processors P

« Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + logz(S))
 Asymptotically, Speedup(S,P) — (S-1)/log2S, as P — infinity

em»Speedup (5=1024) === Speedup (S=2048)

180

160 2™ ¥
140 /
120 -

100 ,. / e —

80 > o
60 ,
40
20 ,
'm

0 - _';m T — T

1 2 4 8 16 32 64 128 256 512 1024

Speedup(S,P)

Number of processors, P (log scale)

8 COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

Array Sum: Speedup as a function of array size S and number of
processors P

« Speedup(S,P) = T(S,1)/T(S,P) = (S-1)/((S-1)/P + logz(S))
 Asymptotically, Speedup(S,P) — (S-1)/log2S, as P — infinity

em»Speedup (S=1024) Speedup (5=2048)
Efficiency(P) < 0.5,
180 for P = 256
o | 160 “—— | ==>wasteful to use
N | 140 " more than 256
rot ‘ ~ processors for S=2048
5 | 120 A
O | 100
QO - gy N—
S | 80 > o
@ | 60 7~ > | Efficiency(P) < 0.5,
40 A / \@r P=>128
50 = ==> wasteful to use
st more than 128
0 = ' ' ' ' ' ' | processors for S=1024
1 2 4 8 16 32 64 128 256 512 1024

Number of processors, P (log scale)

9 COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

10

Amdahl’s Law

If g < 1 is the fraction of WORK in a parallel program that must be executed sequentially for a given
input size S, then the best speedup that can be obtained for that program is Speedup(S,P) < 1/q.

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

11

Amdahl’s Law

Observation follows directly from critical path length lower bound on parallel execution time
— CPL>=q*T(S,1)
— T(S,P)>=q* T(S,1)
— Speedup(S,P) = T(S,D/T(S,P) <= 1/g

Upper bound on speedup simplistically assumes that work can be divided into sequential and
parallel portions

—Sequential portion of WORK = q
- also denoted as fs (fraction of sequential work)

—~Parallel portion of WORK = 1-q
- also denoted as f; (fraction of parallel work)

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

lllustration of Amdahl’s Law:
Best Case Speedup as function of Parallel Portion

Amdahl’'s Law
20.00 ——
-
18.00 //
/ Parallel Portion
16.00 7 — 50%
/ — 75%
14.00 90%
/ — 05%
12.00 /
Q- /
3
o 10.00 e ——
Q /
; I LA
8.00 /
6.00 //
//
2.00 —A——1—
BRI N RN R I
mmmmmmmmmm
~ NN < o0 O (N LN
i mM O
Number of Processors

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

13

Announcements & Reminders

« Quiz #3 is due Tuesday, Feb. 15th at 11:59pm

COMP 322, Spring 2022 (M.Joyner, Zoran Budimli¢)

